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Abstract

Modeling of Planetary Interiors: From Microscopic to Global Scales

by

Sean M Wahl

Doctor of Philosophy in Earth & Planetary Science
and the Designated Emphasis in

Computational Science and Engineering

University of California, Berkeley

Burkhard Militzer, Chair

The inherent difficulty of making and interpreting measurements of the deep interior of
the Earth and other planets necessitates constructing models of their structure and evolution.
Properties of materials at actual planetary conditions are a key input to these models. For
the Earth these conditions extend to the hundreds of GPa and thousands of Kelvin; for
the energetic impact events and within the gas giants the range extends to several TPa and
perhaps tens of thousands Kelvin. Despite tremendous advances in experimental techniques,
much of this range of conditions remains out of reach, and thus, computer simulations of
materials play an important role in characterizing materials within planetary interiors.

This thesis presents a variety of work using computational techniques to: 1) determine
properties of planetary materials from first-principles simulations, and 2) apply these de-
rived properties to models of large-scale planetary structure and processes. First-principles
calculations are unique in their ability to simulate a nearly unbounded range of pressure-
temperature conditions, including those beyond the capacity of any experimental techniques.

In this thesis, I discuss the physics and numerical techniques I have used and developed
to simulate planetary materials at high pressures and temperatures, and to interpret and
condense the results of these calculations. I also present results of studies applying the first-
principles techniques to specific problems in planetary science. I test the stability of compact
rocky cores in the metallic hydrogen-helium envelopes of gas giants, finding that such cores
are likely to undergo dissolution and erosion. I then explore the miscibility of terrestrial
cores and mantles at extreme temperatures. I predict that this mixed rock-metal state is of
importance in catastrophic giant impacts that are now thought to be commonplace in the
early history of the terrestrial planets, or deep inside “super-Earth” exoplanets.

I continue by detailing studies applying material equations of state from simulation and
experiment. I describe work towards developing a more comprehensive thermo-chemical
model of liquid iron alloys integrated with models of Mercury’s thermal history and mag-
netic field energetics. I then describe the derivation and implementation of a new numerical,
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non-perturbative method for precise calculations of gravitational field strength for a rotating,
liquid planet with tides. I then look at the consequences of this new method for the tidal
responses of Jupiter and Saturn, finding a significant, previously uncharacterized contribu-
tion arising from the influence of rotation. Finally, I detail an ongoing effort using interior
structure models of Jupiter to interpret the drastically improved measurements of Jupiter’s
gravity by the Juno spacecraft mission. I find evidence for the existence of a dilute core
in spite of difficulties reconciling first-principles equations of state with observations of the
planet’s atmosphere.
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To my brother, Michael.

Use what talents you possess: the woods would be silent if no birds sang except
those that sang best. - anonymous
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Chapter 1

Introduction

The materials composing Earth’s interior are ∼99% composed of only 8 elements (Fe, O, Si,
Mg, S, Ni, Ca and Al). In Jupiter at least 90% of the planet is composed of just hydrogen
and helium. Nonetheless, these materials are the subject of constant study by experiment
and simulation. The extreme high pressures and temperatures under which these materials
exist make them difficult to study. For the Earth, these conditions extend to ∼300 GPa
and ∼6000 of Kelvin [3] (the temperature value remains contentious); inside Jupiter, the
pressures reach in excess of 4 TPa, while the maximum temperatures in the aftermath of
the moon-forming impact would have been in the tens of thousands Kelvin. Under such
extreme conditions materials can behave in ways that are not predicted from their behavior
at ambient conditions. Insulating materials can become metallic at high pressures, and
elements that are nominally excluded can become readily soluble in a material.

An accurate understanding of the properties of planetary materials is essential in deter-
mining their present structure and their evolution over time. Their properties are inextricably
tied to the methods we use to probe the insides of planets, whether that be through seismol-
ogy, geodesy, or measurement of their gravitational or magnetic fields. But understanding
their properties alone is not sufficient. Planetary Science depends on physical models to take
these properties acting on a microscopic material scale and study how they govern behaviour
on planetary length- and time-scales. The results of such models are often non-unique, due
to the relatively small number of direct measurements that can be made from a planet’s
surface, and due to the nature of key material properties such a density being compatible
with a large range of different compositions. A complete planetary model, therefore, draws
on information from a variety of sources, including cosmochemical inferences and, on Earth,
the record of rock sample exhumed from the planet’s interior.

In this thesis, I present a variety of work using computational techniques to address
questions about planetary interiors and evolution, focused on: 1) determining properties of
planetary materials from first-principles physics simulations, and 2) applying of these derived
properties to models of large-scale planetary structure and processes. In Chapter 2 I discuss
the physics numerical techniques I have used and developed to simulate planetary materials
at high temperatures. Chapters 3 and 4 summarize the results of two studies using these
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first-principles techniques to study the dissolution of rock-ice cores in gas giant planets, and
the high-temperature solubility of terrestrial cores and mantles. Chapter 5 introduces work
to build a thermochemical model of iron alloys for understanding the generation of magnetic
fields in the cores of Mercury and other small terrestrial bodies. Chapter 6 shows the
derivation of a non-perturbative method for calculating self-consistent gravitational fields of
a fluid planet. Chapter 7 uses this method to study the tidal response of Jupiter and Saturn.
Finally, Chapter 8 uses the same technique in combination with first-principles equations of
state to interpret the gravitational field measured by the Juno spacecraft at Jupiter.

1.1 Interior structure and formation of the Earth and

other planets

The interior of the Earth, and presumably most other rocky planets and moons, are differ-
entiated into into a number of layers, as is demonstrated by seismological and geodynamic
studies. It mainly consists of the mantle, which is likely dominantly of magnesium sili-
cates and oxides, and the core, which is presumably Fe-Ni alloys with some light elements
[16, 125]. The Earth’s upper mantle (less than ∼7 GPa) and the entire mantles of smaller
terrestrial bodies are composed of the rock peridotite, consisting of the minerals olivine,
garnet, and pyroxene. With increasing pressure these minerals undergo a number of phase
transitions through the transition zone (410-660 km), eventually transforming into the lower
mantle (669-2891 km) composition of bridgemanite (formally Mg-perovskite) and ferroper-
iclase [183]. Down to a few hundred kilometers above the core-mantle boundary (∼136
GPa), there exists the D′′ layer, which is characterized by strong seismic anomalies and lat-
eral heterogeneities. This layer may involve an additional transition from bridgemanite to
Mg-postperovskite and/or a dense partial melt. The Earth’s core is divided into a liquid
outer core (2891-5150 km, 136-329 GPa), surrounding a solid inner core (5150-6371 km,
329-364 GPa). Smaller rocky planets are also expected to have at least a thin liquid outer
core, due to the significant freezing point depression of Fe-S alloys.

The structure of giant-planet interiors is much more limited, but data from telescope
observations and spacecraft missions, as well as cosmochemical studies based on meteorites
and the solar photosphere have aided in constructing model interiors of Jovian planets [72].
Jupiter and Saturn are composed primarily of hydrogen and helium, but must contain tens of
Earth-masses of heavy elements. The hydrogen-helium mixture transitions from an insulator
to a metal at ∼100 GPa. It is not known for sure whether these planets have compositionally
distinct layers, or if the “rocks” and “ices” exist in solution, and are distributed through the
planet (Chapters 3 and 7 deal with this question). Uranus and Neptune may each have a
small rocky core surrounded by a thick layer of ice-hydrogen-rock mixture, and another layer
near the surface consisting of hydrogen, helium, and ice. Here the “ices” refer to hydrides of
the most abundant light elements (oxygen, carbon, and nitrogen) that are next to hydrogen,
helium and neon, such as water, methane, and ammonia, which condense from the nebula
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at relatively low temperatures.
Even less is known about the interiors and compositions of exoplanets, the confirmed

number of which has reached 3,586 as of March 2017 [161]. The known exoplanets span
a large range of masses from smaller than Earth to greater than Jupiter. These detection
methods have a selection bias towards larger planets that are closer in to their stars, thus,
many fall into to category of “hot Jupiters”. Statistical analyses of the Kepler catalogue,
however, suggest that the most numerous category of planets is that in a “super-Earth” or
“sub-Neptune” mass range. Comparing the planets’ mass-radius data with the equation of
state (EOS) of typical planet-forming materials enables estimating these planets’ composition
[162] and gives some idea of the composition of these planets, although the determination
is non-unique without additional information. The results of the studies in Chapters 3 and
4 have some relevance to exoplanets, as does Chapter 8 in so far as, many exoplanets are
expected to have analogous interior structures to Jupiter.

The final stages of terrestrial planet formation are expected to include a number of
energetic collisions between planetesimals and proto-planets. These giant impacts have been
invoked to explain a number of features of and differences between planets in the inner solar
system. One of the more extreme examples is the hypothesized moon-forming impact. Recent
studies have suggested even more energetic, high-angular momentum collisions [45, 33] than
the canonical, Mars-sized impactor scenario [32]. A consequence of such a giant impact is
that at least a portion of the mantle would have been molten in the aftermath, and may
have been heated to temperatures much higher than those typically considered in studies of
Earth materials. We pose this question in Chapter 4.

For the giant planets, there is an ongoing debate regarding the nature of their formation:
whether a terrestrial-like core must form first for the gas to accrete on to, or if they formed
directly from the collapse of an instability in the gas. The concentration of heavy elements
towards the center of the planet is indicative of the first scenario, although a comprehen-
sive theory for the early evolution of the gas giants is not settled. The work presented in
Chapters 3 and 8 are relevant for this debate.

1.2 Methods in high-pressure studies

Although the studies presented here focus on numerical simulations, the development of
numerical techniques has gone hand in hand with experimental techniques for studying ma-
terials at high pressure. There are two main classes of high-pressure experimental techniques:
1) static compression and 2) dynamic compression. The first involves applying a constant
pressure to a sample. These techniques include ones based on large-volume press, such as
the multi-anvil apparatus [89] that can attain pressures of ∼30 GPa (top of the lower man-
tle) and sometimes ∼100 GPa, or diamond anvil cells [119], which reach pressures greater
than 360 GPa (center of the Earth). The second class involves generating and monitoring a
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shock wave in a sample. The drivers for dynamic compression experiments include gas gun1,
intensive laser2, or strong magnetic fields3 [8].

Static compression has the advantage of flexibility in reaching a large range in desired
temperatures and pressures. Large volume presses allow for larger, centimeter-sized samples,
which is helpful for studying equilibrium phase relations thorough analysis of the recovered
samples. Diamond anvil cells are frequently used for studying isolated materials up to very
high pressures, often with laser-heating to reach the desired temperature. Diamond anvil cell
studies have benefited greatly from the development of new-generation synchrotron radiation
facilities, which provide high-energy X-ray beams to determine the structure of µm-sized
samples in situ.

Dynamic compression utilizes shock waves to generate high pressures, which are necessar-
ily accompanied by simultaneous high temperatures. This technique is particularly useful for
constraining equations of state and detecting phase transitions under the extreme conditions.
During propagation of the shock wave, the courses of the states of a target mineral are usu-
ally along specific paths that are governed by the EOS. Techniques such as pre-compression
and multi-shock allows reaching states off the principle Hugoniot, and ramp compression
enables high pressure measurements at low temperatures, which can be useful for studying
pressure-driven phase transformations predicted by ground-state first-principles calculations.

In spite of sweeping advancements in the field, limitations remain for high-pressure exper-
imental techniques, some of which can be aided by judicious use of first principles simulations.
There are regions of pressure temperature space that are difficult or impossible to achieve
in experiments. Shock experiments are classically confined to follow the Rankine-Hugoniot
curve, meaning that for a given pressure the temperatures rise much faster than typical
planetary barotropes. Laser heating of diamond anvil cells also has its limits when it comes
to reaching very high temperatures. Thus, there is a range of conditions in deep planetary
interiors, particularly for the giant planets, that are inaccessible to experiments. There are
certain material properties that are difficult to measure in situ, and only some questions
can be adequately addressed with recovered samples. In some cases, accuracy of experi-
mentally determined pressures and densities are insufficient to constrain equations of state
satisfactorily (as is the true for experimental hydrogen-helium equations of state of interest
to the work in Chapter 8). In spite of these issues, experiments are ultimately the way to
unambiguously verify theoretical predictions. It is clear that both fields benefit immensely
from contributions from the other.

1E.g., Lindhurst Laboratory for Experimental Geophysics at Caltech, and more resources listed on
http://mygeologypage.ucdavis.edu/stewart/OLDSITE/ImpactLabs.html.

2E.g., National Ignition Facility at Lawrence Livermore National Laboratory.
3E.g., Z Machine at Sandia National Laboratories.
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Chapter 2

First-Principles Simulation Methods

In quantum chemistry and condensed matter physics, first-principles methods (often referred
to as ab initio methods) refer to calculations of material properties using physical models that
do not rely on any specific experiment or measured material property. These calculations
are, therefore, built up from physical constants including Planck’s constant h, as well as the
mass and charge of constituent electrons (m and e) and nuclei (Mi and Zi). Nonetheless,
approximations must be made to find a tractable solution to the many-body Schrödinger
equation.

These methods are of particular use in the study of materials in the deep interiors of Earth
and other planets, because the inherent high pressures and temperatures pose difficulties for
the design and interpretation of experiments. For the Jovian planets, Jupiter and Saturn,
these conditions are so extreme that modern experimental techniques are unable to recreate
the conditions through a large portion of the planet’s interior. In the following chapters,
I will be addressing questions of materials in some of these extreme pressure-temperature
ranges.

In studies of materials, the most prevalent classes of first-principles methods are based
on density functional theory (DFT) or quantum Monte Carlo (QMC) [4, 146, 122]. Most of
these techniques are fundamentally zero temperature theories. In this work, as in most first-
principles applications to planetary sciences, I focus on the use of DFT. This is due primarily
to the advantage of its better computational efficiency. This computational efficiency means
that DFT can be applied to larger atomic systems and to consider finite temperature more
easily than with Monte Carlo based techniques. The higher precision QMC techniques do
have an important place in determining stability between phases, in which energy differences
are extremely small. Since the focus of the work presented here is on systems involving the
exchange of atoms between phases, we expect the energy differences to be large enough for
DFT predictions to be sufficiently accurate.

This chapter introduces the theoretical and computational backgrounds of the density
functional theory molecular dynamics (DFT-MD) technique, which is our workhorse method
for first-principles studies in planetary science. We also describe in depth the thermodynamic
integration method, which provides a calculation of entropy of the simulated system.
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2.1 Introduction

The total energy of quantum system of electrons and nuclei is described by the Hamiltonian1

Ĥ = T̂ + Vext + Vee + VII

= −
∑
i

~2

2m
∇2
i −

∑
i,I

ZIe
2

|r i −RI |
+
∑
i,j

(i 6=j)

e2

2|r i − r j|
+
∑
I,J

(I 6=J)

ZIZJe
2

2|RI −RJ |
, (2.1)

where T̂ , Vext, Vee, and VII represent electronic kinetic energy, electron-nuclei Coulomb ab-
sorption2, electron-electron Coulomb repulsion, and nuclei-nuclei Coulomb repulsion, respec-
tively. Here ri describes the configuration of the electrons while RI describes the position.
of the nuclei. Because the mass of the nuclei is much greater than that of the electrons,
the kinetic energy of the nuclei can be ignored, and the electrons are assumed to rearrange
instantaneously with any change in the position of the nuclei (see Chapter 3.1 of [122]).
This assumption, called the Born-Oppenheimer or adiabatic approximation, simplifies the
wavefunction of the system to consider only electronic interactions, with interactions with
the fixed nuclei occurring only through the potential. This allows us to calculate solutions
to a many-body equation for the system of electrons

ĤΨ{r i} = EΨ{r i}, (2.2)

for a specified configuration of nuclei RI Hamiltonian describing all electron-electron and
electron-nuclei interactions further reduces to

Ĥ = T̂ + Vext + Vee

= −
∑
i

~2

2m
∇2
i −

∑
i,I

ZIe
2

|r i −RI |
+
∑
i,j

(i 6=j)

e2

2|r i − r j|
. (2.3)

2.2 Density functional theory

A practical approach to solving the above fully interacting many-body problem requires some
additional assumptions. Of the available approaches to solving Eq. 2.1, DFT is the most
widely used to date.

The DFT approach is based on two theorems proven by Hohenberg and Kohn [79] in
1964: 1) any property of a system of interacting particles can be determined by the ground-
state density of electrons n0(r); and 2) for any external potential Vext(r), a universal energy
functional E[n] can be defined whose global minimum value is at n(r) = n0(r). The first

1Neglecting relativistic, magnetic, and quantum electrodynamic effects
2In general, Vext can also include electric fields and Zeeman terms.
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theorem is of great practical importance because it reduces the dimensionality of the prob-
lem from 3N to 3 dimensions, rendering the problem far more tractable for computational
methods. These theorems are formally exact and general, and were soon made soluble in
practice by the Kohn-Sham approach [106] making use of the following ansatzes:

• The exact ground-state density of electrons can be represented by that of an auxiliary
system of non-interacting particles.

• The auxiliary Hamiltonian is chosen to have the usual kinetic operator and an effective
local potential V σ

eff(r).

This allows solving the many-electron Eq. 2.2 by converting it into an independent-particle
problem

Ĥσ
KSψ

σ
i (r) = εσi ψ

σ
i (r), (2.4)

where Ĥσ
KS = T̂ + V σ

eff(r) is the spin-dependent single-particle Hamiltonian, where σ denotes
spin.

The Kohn-Sham formulation for the ground-state energy functional is

EKS = Ts[n] + EHartree[n] +

∫
drVext(r)n(r) + EII + Exc[n], (2.5)

where

n(r) =
∑
σ

Nσ∑
i=1

|ψσi (r)|2 (2.6)

is the density of electrons satisfying
∫
n(r)d(r) = N (total number of electrons),

Ts = − ~2

2m

∑
σ

Nσ∑
i=1

〈ψσi |∇2|ψσi 〉 = − ~2

2m

∑
σ

Nσ∑
i=1

|∇ψσi |2 (2.7)

is the kinetic energy, and

EHartree[n] =
1

2

∫
drdr ′

n(r)n(r ′)

|r − r ′| (2.8)

is the classical self (Coulomb)-interaction energy, of the independent-particle system. All
many-body effects are grouped into the exchange-correlation energy

Exc[n] = FHK[n]− (Ts[n] + EHartree[n])

= T [n]− Ts[n] + Eint[n]− EHartree[n].
(2.9)

The exact ground-state energy and density of electrons can be obtained by solving Eqs. 2.4
and 2.6 in a self-consistent iterative way.

The Kohn-Sham approach provides a feasible way of determining the exact ground-state
properties of many-electron systems: given a known Exc[n]. In principle, the functional form
of the exchange-correlation is not known. This leads to the main assumption of the DFT
method. The success of the DFT method relies on the fact that it is often reasonable to
approximate Exc[n] as a local or nearly local functional of the density.
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Computational considerations

Exchange correlation

There have been extensive efforts in exploring practical ways to improve the approximate
the exchange-correlation functional to better match. The simplest choice, the local density
approximation (LSDA, or simply LDA), is derived from the homogeneous electron gas. LDA
continues to be a popular choice due to its simplicity, freedom from required fit parameters,
and its relative success in describing many real materials.

In LDA, the exchange-correlation energy

Exc[n] =

∫
drn(r)εxc([n], r) =

∫
drn(r)[εx([n], r) + εc([n], r)]. (2.10)

The exchange energy density (in atomic units) follows the expression [122]

εσx = −3

4

(
6

π
nσ
)1/3

. (2.11)

In spin-unpolarized systems, n↑ = n↓ = n/2, so

ε↑x = ε↓x = εx = −3

4

(
3

π
n

)1/3

= − 3

4π

(
9π

4

)1/3
1

rs
, (2.12)

where rs characterizes the density of electrons via 1/n = 4πr3
s/3; while in partially polarized

cases,
εx(n, ζ) = εx(n, 0) + [εx(n, 1)− εx(n, 0)]fx(ζ), (2.13)

where fx(ζ) = [(1 + ζ)4/3 + (1− ζ)4/3 − 2]/[2(21/3 − 1)], ζ = (n↑ − n↓)/n, and n = n↑ + n↓.
For the correlation energy density, the widely used expression is based on parameterization
[152] of accurate quantum Monte Carlo simulations of homogeneous electron gas [35]

εc(rs) =

{
−0.0480 + 0.031 ln rs − 0.0116rs + 0.0020rs ln rs rs < 1,

−0.1423/(1 + 1.0529
√
rs + 0.3334rs) rs > 1.

(2.14)

The success of LDA has also prompted extensive work on designing new functionals. For
example, by considering the non-uniform nature of electron distribution, several schemes
of generalized gradient approximation (GGA) have been developed, in which the exchange-
correlation functional is a function of both the density of electrons n and its gradient ∇n. In
recent years, one of the most popular exchange-correlation functionals is a GGA-class func-
tional developed by Perdew, Burke and Ernzerhof [154] (PBE). Most of the DFT simulations
presented in this work were performed using the PBE exchange correlation functional.

There has also been active research (Chapter 5 of [122]) on other rungs of the Jacob’s
Ladder, such as meta-GGA, hybrid functionals, toward higher levels of chemical accuracy,
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at the cost of increased computation time. There have also been more targeted attempts to
solve material specific problems, for example the introduction of long-range Van der Waals
forces using the VdW potentials [42].

In all cases, the choice of energy functional is a fundamental approximation, and results
must be compared to a physical system to truly quantify the uncertainty arising from the
choice.

Self consistent iteration

Numerically solving the Kohn-Sham equation includes an initial guess of the density, and an
iteration over nin → V in → nout. In the Kohn-Sham energy functional EKS = Ts[n]+Epot[n],
the kinetic energy can be expressed as

Ts[n] = Es −
∑
σ

∫
drV σ,in(r)nout(r , σ)

=
∑
σ

Nσ∑
i=1

εσi −
∑
σ

∫
drV σ,in(r)nout(r , σ)

≈ Es[Vnin ]−
∑
σ

∫
drV σ

nin(r)nin(r , σ),

(2.15)

and the potential energy

Epot[n] =

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n] ≈ Epot[n

in]. (2.16)

These allow accurate approximation of the true Kohn-Sham energy with

EKS ≈ Es[Vnin ]−
∑
σ

∫
drV σ

nin(r)nin(r , σ) + Epot[n
in], (2.17)

for densities near the correct solution. Equation 2.17 is now standard at each step of the
self-consistent iteration in solving Kohn-Sham equations (see Chapter 9.2 of [122]).

Basis sets and pseudopotential

There are different methods for solving the Kohn-Sham equations. Typically one chooses a
basis set to expand the orbitals, according to the nature of the system. Plane wave basis,
Gaussian basis, and Slater-type orbital basis are often used. For electronic structures con-
densed systems with periodic boundary conditions, such as those presented here, plane waves
is the natural choice. They form a complete, general basis that allows for easy convergence.

Another noteworthy concept in DFT is the pseudopotential, which is used in most ma-
terials simulations considering elements with Z>2. The idea of pseudopotentials is to use an
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effective ionic potential to replace the combined Coulomb potential of the nucleus and core
electrons on the valence electrons, whose effect is assumed to be nearly identical regardless
of ionic configuration. The use of pseudopotentials greatly reduces the size of the basis,
which otherwise has to be large to describe the non-smooth electronic states near the nu-
cleus. Particular attention must be paid to the pseudopotential in studies at extremely high
pressures, because a pseudopotential can be invalidated by overlapping of the core states of
nearby atoms.

All DFT simulations presented here were performed using the implementation of the
DFT formalism the Vienna ab initio simulation package (VASP) [109]. VASP uses projector
augmented wave pseudopotentials [18]

2.3 Finite temperature calculations

Real materials exist at finite temperatures. This imposes a number of additional problems
for first-principles simulations that are not directly addressed by the standard DFT methods.
One of the most fundamental consequences is that the time averaged properties of the mate-
rial do not correspond to a single, fixed ionic configuration. Rather, they must be obtained
from an ensemble of different configurations, which must be weighted using principles from
statistical mechanics. In most experimental and “real world” applications, the ensemble of
interest is a NPT ensemble (in which the number of atoms, pressure and temperature is
conserved). For first-principles calculations, however, it is typically much easier to consider
a NV E or microcononical ensemble (with fixed volume and total energy).

Low to intermediate temperatures can be treated as a perturbation to the ground state
(see some discussion in Section 3.1 of [122]), leading to quasi-harmonic approximation
(QHA). QHA typically works for solids at temperatures that are well below their melt-
ing temperature, where anharmonic effects are relatively small. For this reason, QHA can
be used for applications in the solid portions of planets, but is generally insufficient for ma-
terials near or above their melting temperature. For this reason the work presented here
focuses on using first-principles molecular dynamics (FPMD or DFT-MD).

Molecular dynamics

Molecular dynamics (MD) is a means of sampling different configurations that are gener-
ated through tracking the realistic motions of nuclei, tracking their changing positions and
velocities over time on pico-second timescales. Since these simulations mimic real processes
it allows one to directly observe some properties, such as diffusion.

At its heart, a MD simulation is simply an extension of Newton’s laws of motion. Con-
sidering the simple case of pair potentials,

V (R) =
∑
i>j

V (ri, rj), (2.18)



CHAPTER 2. FIRST-PRINCIPLES SIMULATION METHODS 11

the total force acting on the ith atom is

Fi = miai = −∂V
∂ri

. (2.19)

The change of velocity then follows as

∂vi
∂t

=
Fi

mi

(2.20)

and the change in position as
∂ri
∂t

= vi. (2.21)

Molecular dynamics implementations typically use the Verlet algorithm [189] which pro-
vides good numerical stability, as well as desirable physical properties such as time-reversibility.
Because the primary goal of MD is in generating sample configurations, higher order inte-
grators are typically not necessary. The new position of an atom rn+1 is updated based on
its previous two positions

rn+1 = 2rn − rn−1 +

(
Fn

m

)
∆t2 +O(∆t4) (2.22)

and the velocity

vn =
rn+1 − rn−1

2∆t
+O(∆t2). (2.23)

The time averaged material properties can then be determined from an average of those
calculated for each configuration. In the microcanonical ensemble, the total energy of simu-
lation is constant, but the kinetic and potential energy, K and V where E = K+V fluctuate
over time. The time averaged kinetic energy is found as

〈K〉 =
∑
i

1

2
mi〈v2

i 〉 =
1

2
NkBT. (2.24)

While T is free to fluctuate between time steps, it is necessary to maintain the time-
averaged temperature over the course of the simulation. This is accomplished through the
use of the Nosé-Hoover thermostat [148], which maintains 〈T 〉 by considering heat transfer
between the real system and imaginary degrees of freedom. The important features of this
thermostat is that it is proven to obey the microcanonical ensemble, thus preserving the
ability to use the configurations to sample the desired properties.

Classical Monte Carlo

Besides MD, the other technique for sampling the microcanonical ensemble is using Monte
Carlo (MC) techniques. The technique generates a Markov chain of configurations (r1,r2,r3. . . )
using the Metropolis algorithm [127], and then averaging the property of interest over those
configurations. The Metropolis algorithm is as follows:
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1. Start from configuration Rold.

2. Propose a random move of an atom within a surrounding box, Rold → Rnew.

3. Compute energies Eold = V (Rold) and Enew = V (Rnew).

4. If Enew < Eold accept the new configuration.

5. If Enew > Eold check whether to accept the new configuration with probability A.

where the probably acceptance in the “up-hill” case is

A(Rold → Rnew) = exp

[
−V (Rnew)− V (Rold)

kBT

]
. (2.25)

Aggregated over many Monte Carlo steps, this criterion leads to a set of configurations with
a probability obeying canonical distribution with temperature T . In practice, a good rule of
thumb is to choose the size of the box for moving the atoms such that the acceptance rate is
near 50%. The Boltzmann factor is thus absorbed into the chain of generated configurations,
and properties can be estimated as their simple average over all the configurations.

There are also a number of different kinds of quantum Monte Carlo (QMC) techniques,
which provide an alternative to DFT for solving the many-body Schrödinger equation and are
used extensively in condensed matter physics. These are, however, generally less computa-
tionally efficient than DFT, and are not presented in this work. Classical Monte Carlo (CMC)
describes a simpler model system with interactions defined by pair potentials Vij = V (ri, rj).
These efficient CMC simulations play an important role in our implementation of the ther-
modynamic integration technique outlined in the subsequent section.

2.4 Thermodynamic integration

One of the major shortcomings of standard DFT-MD calculations from the viewpoint of
many planetary science problems is the inability to calculate the entropy S of a simulation.
This quantity is of particular interest for a number of planetary problems because it is
needed to calculate and compare the Gibb’s free energy G = E + PV − TS. While one
can identify the pressure of phase transitions at T = 0 by directly comparing the Helmholtz
free energy H = E + PV from DFT, mapping out these transitions up to thousands of K
requires comparing G between different phases. The technique is essential when considering
transitions that involve liquid phases where use of the QHA is not possible. Calculating the
entropy is also important for predictions of the temperature structure in the deep interiors of
planets. In the simplest case of a vigorously convecting fluid layer, the T -P path of constant
entropy is a good approximation

In addition to phase transitions within a composition, a determination of the entropy
also allows us to begin addressing questions of simple chemical and compositional problems.
For instance, in Chapter 4 I present results on the high pressure solubility of iron and MgO,
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following the reaction MgOsol/liq +Feliq ⇒ FeMgOliq. This is achieved by running simulations
of three separate phases and comparing the change Gibb’s free energy

∆Gmix =
1

24
G(FeMgO)24 −

1

32

[
G(MgO)32 +GFe32

]
(2.26)

associated with the reaction, where G(MgO)32 and GFe32 are the Gibbs free energies of a pure
MgO and iron endmembers with subscripts referring to the number of atoms in the periodic
simulation cell. A representative snapshot from a MD simulation sell of (FeMgO)24 is shown
in Fig. 2.1.

Figure 2.1: Snapshot of an MD-DFT simulation of liquid Fe + MgO mixture.

Thermodynamic integration (TDI) is a technique that considers a fictitious transforma-
tion of one atomic system into another. For instance, one can consider a system where you
slowly change the interaction between atoms, running separate simulations for each step in
the transformation. In our case, we calculate an absolute S by considering the transforma-
tion of the DFT system into an analogous classical system with the same number of atoms,
having an analytic expression for S. Fig 2.2 shows a schematic representation of this transi-
tion. In principle, this can also be done between two DFT systems, for instance transforming
some subset of atoms from one element to another

Computation of Gibbs free energies

The Gibbs free energy of a material includes a contribution from entropy of the system. Since
entropy is not determined in the standard DFT-MD formalism, we adopt a two step thermo-
dynamic integration method used in previous studies [202, 201, 194, 66]. The thermodynamic
integration technique considers the change in Helmholtz free energy for a transformation be-
tween two systems with governing potentials Ua (ri) and Ub (ri). We define a hybrid potential
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Figure 2.2: Schematic illustration of a thermodynamic integration between a simulation
with DFT interactions and one with classical interactions. The technique involves performing
simulations where two different interaction potentials are calculated for a given configuration,
and updated with a fractional mixture of both interactions. The difference in free energy
between two systems is the integrated over a number of different values of that mixing
parameter λ.

Uλ = (1− λ)Ua + λUb, where λ is the fraction of the potential Ub (ri). The difference in
Helmholtz free energy is then given by

∆Fa→b ≡ Fb − Fa =

∫ 1

0

dλ 〈Ub (ri)− Ua (ri)〉λ (2.27)

where the bracketed expression represents the ensemble-average over configurations, ri, gen-
erated in simulations with the hybrid potential at constant volume and temperature. This
technique allows for direct comparisons of the Helmholtz free energy of DFT phases, FDFT,
by finding their differences from reference systems with a known analytic expression, Fan.

In practice, it is more computationally efficient to perform the calculation ∆Fan→DFT in
two steps, each involving an integral of the form of Eqn. 2.27. We introduce an intermediate
system governed by classical pair potentials, Ucl, found by fitting forces to the DFT trajecto-
ries [202, 90]. For each pair of elements, we find the average force in bins of radial separation
and fit the shape of a potential using a cubic spline function. We constrain the potential to
smoothly approach zero at large radii and use a linear extrapolation at small radii, where
the molecular dynamics simulations provide insufficient statistics. The full energetics of the
system is then described as

FDFT = Fan + ∆Fan→cl + ∆Fcl→DFT (2.28)
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where ∆Fcl→DFT requires a small number of DFT-MD simulations, and ∆Fan→cl numerous,
but inexpensive classical Monte Carlo (CMC) simulations. The method depends on a smooth
integration of ∆Fcl→DFT and avoiding any first order phase transitions with λ. We use five
λ points, for all ∆Fcl→DFT integrations. For Liquids, we use a combination of classical pair
and one-body harmonic oscillator potentials for Ucl [201, 194]. Liquids we use only pair
potentials. For solids, the analytical reference system is an Einstein solid with atoms in
harmonic potentials centered on a perfect lattice, while a gas of non-interacting particles is
used for liquids. We found integrating over 5 lambda points to be sufficiently accurate in
most cases, with an increase to 9 lambda points changing our results by < 0.003 eV per
formula unit in the FeMgO study. In some cases, as few as 3 lambda points are sufficient for
the transformation from DFT to pair potentials.

2.5 Tests of the thermodynamic integration method

Here we present to tests validating the TDI method for use in multi component systems using
different types of pair potentials. These were performed in conjunction with the Fe/MgO
solubility study presented in Chapter 4. Simulations in the following section were performed
by Burkhard Militzer and presented in a joint publication.

Comparison of thermodynamic integration with different classical
potentials

The classical pair potentials are derived by fitting the forces and positions along a pre-
computed DFT-MD trajectory. The potentials are constructed to approach zero for large
separations. For small separations where the trajectories provide no information, linear
extrapolation is used, which means our pair potentials are finite at the origin. All of the
results presented in the paper used this fitting procedure. Figure 2.3 shows an example
for the pair potentials for liquid MgO at 50 GPa and 6000 K. While the Mg-Mg and O-O
potentials are purely repulsive, the deep minimum in the Mg-O potential represents the
attractive forces between ions of opposite charge.

Table 2.1: Comparison of integration paths using different classical potentials.

Potentials Fan Fan→cl Fcl Fcl→DFT FDFT

Regular, bonding potentials −427.151 27.962 −399.189 −233.825 ± 0.031 −633.014 ± 0.031
Non-bonding potentials −427.151 204.129 −223.022 −409.927 ± 0.080 −632.950 ± 0.080

Table 2.1 provide all terms of the thermodynamic integration procedure. In order to
test how robust our approach is, we constructed a different set of pair potential where we
eliminated all bonding forces. The values of these non-bonding potentials are constrained
to be positive, and asymptote to zero without a minimum. Obviously, they are a poor
representation of the DFT forces in the system, and therefore, the free energy differences
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between the DFT and the classical system, Fcl→DFT, given in table 2.1, are much larger
than for our regular potentials. However, when the values for Fan, Fan→cl, and Fcl→DFT are
added, we recover the results for FDFT within the 1σ error bars. This demonstrates that
our free energy calculations are not sensitive to the details of how we construct our classical
potentials.
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Figure 2.3: Example pair potentials for liquid MgO at 50 GPa and 6000 K. Left: Regular pair
potentials fit to DFT-MD simulations, with a linear extrapolation at small separation and an
asymptote to 0 at large separation. All of the results presented in the paper used this fitting
procedure. Right: Non-bonding potential fit with the same procedure, but constraining
values to be positive. Included for comparison with the pair potentials in table 2.1.

Although the correct final result is found when using an unrealistic potential, the effi-
ciency for the thermodynamic integration is the highest when the classical forces best match
the DFT forces. Figure 2.4 shows the calculated values of 〈VDFT − Vcl〉 as a function of λ us-
ing the regular “bonding” potential, and for the “non-bonding potential”. Here each plotted
value of lambda represents an independent DFT-MD simulation using that fraction of DFT
forces, along with the complementary fraction of classical forces. The integral of this func-
tion yields the Helmholtz free energy Fcl→DFT. In the first case , the function 〈VDFT − Vcl〉
in figure 2.4 depends weakly on λ. The function is almost linear and the difference between
values at λ = 0 and 1 is small. When both criteria are satisfied, very few λ points are needed
to evaluate the integral. The simulations with non-bonding potentials experience larger fluc-
tuations due to the greater mismatch in forces, leading to a larger statistical uncertainty. As
a result, these simulations required longer simulation times to match the results found with
bonding potentials.

Figure 2.5 shows 〈Vcl〉 as a function of λ from classical Monte Carlo simulations. The
integration of Fan→cl function becomes strongly non-linear as λ approaches zero, the non-
interacting case. Since classical simulations are approximately 105 times more efficient, it is
possible to obtain very close sampling of the cusp in the integrated function.
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Figure 2.4: The integration path to find Fcl→DFT potentials for MgO at 50 GPa 6000 K, using
the regular, bonding pair potentials (upper) and the non-bonding pair potentials (lower).
Figure credit to Burkhard Militzer.

Using the definition for the ensemble averaged potential at a given λ

〈Vcl〉λ =

∫
drVcl(r)e−βλVcl(r)

Z
, (2.29)

where Z is the partition function

Z =

∫
dr e−βλVcl(r), (2.30)
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Figure 2.5: The integration path to find Fan→cl potentials for MgO at 50 GPa 6000 K,
using the regular, bonding pair potentials (left) and the non-bonding pair potentials (right).
These are plotted against the integration parameter, λ, to the 1/4 power. Figure credit to
Burkhard Militzer.

we find the following expression as λ→ 0

〈Vcl〉λ→0 =

∫
drVcl∫
dr 1

=
1

V

∫
dr r2Vcl(r). (2.31)

Then, from the derivative of 〈Vcl〉λ in equation 2.29 and 2.31,

d 〈Vcl〉
dλ

=
1

Z2

[
Z

∫
dr (−β)V 2

cl(r)e−βλVcl(r) − (−β)

{∫
drVcl(r)e−βλVcl(r)

}2
]

= (−β)
[〈
V 2

cl

〉
− 〈Vcl〉2

]
d 〈Vcl〉
dλ

∣∣∣∣
λ→0

= (−β)

[
1

V

∫
dr r2V 2

cl(r)−
{

1

V

∫
dr r2Vcl(r)

}2
]

(2.32)

This gives us the slope and intercept for the integration at λ = 0, necessary to correctly
integrate the cusp. The CMC calculations lower the cost of the simulation by a factor of over
104 compared to the DFT simulations. Because of the extreme difference in computational
efficiency, it is always best to adjust the classical potential to match the DFT forces to
minimize the number of λ points needed.
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Verification of thermodynamic integration in multicomponent
systems

The second test is to verify that, in a multi-component system, the integration path does not
effect the results. An integration path needs to be constructed that connects a system with
Mg-Mg, Mg-O, and O-O pair potentials with an non-interacting system. In our standard
procedure, we turn on all pair potentials simultaneously by changing λ1 = λ2 = λ3 from 0
to 1.

Vλ1λ2λ3 = λ1VMg−Mg + λ2VMg−O + λ3VO−O (2.33)

However, as we will now demonstrate, alternative integration paths will give the same results.
We compare different integration paths to calculate the free energy of the classical system,
Fcl, for both the regular and non-bonding potentials. This is comparison cannot be made
directly for Fcl→DFT, because tracking the interaction of different species separately is not
possible in a Kohn-Sham formulation.

Table 2.2: Comparison of different integration paths using classical potentials.

Potential Fan Fstep Fan +
∑
Fstep

Non-bonding −427.151 F000→111 = 204.196(27) −222.955(27)

Non-bonding −427.151 F000→010 = 16.328(6) −222.953(45)
F010→111 = 187.870(39)

Non-bonding −427.151 F000→101 = 166.363(15) −222.962(21)
F101→111 = 37.826(18)

Non-bonding −427.151 F000→100 = 104.323(11) −222.954(52)
F100→110 = 31.225(10)
F110→111 = 68.650(31)

Regular −427.151 F000→111 = 28.028(31) −399.123(31)

Regular −427.151 F000→101 = 182.820(16) −399.123(37)
F101→111 = −154.792(21)

The simulations in the table above were performed by Burkhard Militzer. In line 2 of
table 2.2, we turn on the Mg-O potential in the first integration step (F000→010) and then
switch on the Mg-Mg and O-O potentials in the second and final integration step (F101→111).
The indices refer to the three λ values for Mg-Mg, Mg-O, and O-O potentials, respectively.
In line 3 of table 2.2, we interchange both integration steps. In line 4, we performed three
integration steps turning on the one potential after the other. In the last column, we compare
the classical free energies after adding the results from every integration step to Fan. The
results agree within the statistical uncertainties demonstrating that the same classical free
energies can be obtained for four different integration paths using non-bonding potentials.
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In table 2.2, we also show the results for two integration paths using regular, bonding
potentials. We find consistent results when we either turn on all potentials simultaneously,
and when we switch on the Mg-Mg and O-O potentials in the first step and the Mg-O
potential in the second. We were not able, however, to turn on the attractive Mg-O alone,
because the system becomes unstable due to the imbalance between attractive and missing
repulsive forces. This is similar to what happens in the case of a first-order phase transition,
over which thermodynamic integrations are also invalid. Nevertheless, this test demonstrates
that different integration paths give consistent results for the systems with attractive forces
when care is taken to taken to avoid instabilities.
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Chapter 3

Dissolution of Giant Planet Cores

3.1 Motivation

Despite recent advances in computational methods improving understanding of the hydrogen-
helium dominated outer layers [126, 60, 130, 202], knowledge of the deep interior structure
of giant planets is limited. Determining the size of a dense central cores in a giant planet is
dependent upon the model and equation of state used. Current observational evidence yields
recent estimates for present day core mass of ∼0−10 [71], ∼14−18 [129], and ∼10-25 Earth
masses [196] for Jupiter, and ∼9−22 [71] Earth masses for Saturn. The Juno spacecraft,
en route to Jupiter, will improve this constraint with more precise measurements of the
giant’s gravitational field [78]. Meanwhile, the density profiles of Neptune and Uranus allow
non-unique solutions for the compositional structure for much of the interior [70, 71].

It has long been suggested [175, 176], that a portion of this dense material might be
redistributed in solution with hydrogen. As a result, erosion of a dense core would cause it to
shrink over the lifetime of the planet. Possible consequences of this process are only beginning
to be enumerated in evolutionary models [36, 111, 133]. The establishment of a gradient
in concentration of a heavy dissolved component may change the nature of convection in
a portion of the planets interior. This hypothesized ‘double-diffusive’ region reduces the
efficiency of heat transfer, thereby altering the thermal evolution of the planet. A schematic
diagram of the resulting dissolved core is presented in Fig. 3.1. Comprehensive understanding
of the process has been limited by the lack of knowledge of the solubility of various phases
in metallic hydrogen, as well as poor understanding of the scaling of convective efficiency
in the presence of competing gradients of composition and temperature. In this study, we
address the first issue for iron metal.

As a result of continuing discoveries by Kepler [23] and other exoplanet surveys, the
number of confirmed planets has climbed to over 800, a large proportion of which are giants.
This presents a growing sampling of planetary mass-radii relationships that will be funda-
mental to understanding the evolution of giant planet interiors. The range of mass-radius
relationships observed for exoplanets exhibit variation beyond those in the solar system. In
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Figure 3.1: Schematic diagram demonstrating the difference between a compact and dissolv-
ing core for Jupiter.

some cases, such as Corot-20b [49], the relationships may even defy explanation by simple
structural models. Redistribution of dense core material lowers the heavy element content
required to explain anomalously high observed densities.

The favored model for gas giant formation [134, 20, 156] relies on the early formation of
a large planetary embryo of critical mass to cause runaway accretion of hydrogen and helium
gas. A competing theory involves collapse of a region of the disk under self-gravity, e.g. [24],
but may have difficulty explaining significant enrichment of refractory elements [83, 71]. The
immediate result of a core-accretion hypothesis is a planet with the ice-rock-metal embryo
residing at the center as a dense core, surrounded by an extensive layer of metallic hydrogen
and helium. The role of core erosion to the subsequent evolution is a major source of
uncertainty, but in principle, can explain shrinking of cores to masses smaller than those
necessary to form the planet under the core-accretion hypothesis.

Core erosion in giant planets can be addressed by determining the solubility of analogous
phases. Previous studies have considered an icy layer of fluid and superionic H2O [201, 200],
and a rocky layer consisting of MgO [203] and SiO2 [65], which have been shown to separate
at relevant conditions [186]. Assuming the same gross distribution, elements as terrestrial
bodies, the innermost core would be composed of a dense, metallic alloy composed primarily
of iron.

Ab initio random structure searches [155] demonstrate that iron remains in a hexagonal
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close packed (hcp) structure remains stable up to pressures approaching those at Jupiter’s
center, ∼2.3 TPa, at which point it undergoes a phase transition to face centered cubic (fcc)
structure. Stixrude [181] demonstrated a gradual decrease in this transition pressure with
temperature. Simulations of liquid hydrogen [129, 130, 126] undergo a gradual transition
from molecular to metallic, which is complete by ∼ 0.4 TPa at low temperatures. Stable
mixtures of Fe and H have been suggested at lower P -T conditions, applicable to terrestrial
cores [11].

3.2 Material phases

We performed density functional theory molecular dynamics (DFT-MD) simulations to de-
termine the energetics of a dissolution reaction, in which solid iron dissolves in pure liquid
hydrogen. We calculate a Gibbs free energy of solvation:

∆Gsol (Fe : 256H) = G (H256Fe)−
[
G (H256) +

1

32
G (Fe32)

]
, (3.1)

where G (H256) and G (Fe32) are the Gibbs free energies of a pure hydrogen liquid and solid or
liquid iron. G (H256Fe) is the Gibbs free energy of 1:256 liquid solution of iron in hydrogen.
We assume that analysis of a single low-concentration solution is sufficient to determine the
onset of core erosion, since the reservoir of metallic hydrogen would be much larger than the
core. This does not rule out non-ideal effects of higher concentrations that might exist in a
narrow, poorly convecting layer at the top of a core.

All simulations presented here were performed using the Vienna ab initio simulation
package (VASP) [109]. VASP uses the DFT formalism utilizing pseudopotentials of the
projector augmented wave type [18] and the exchange-correlation functional of Perdew, Burke
and Ernzerhof [154]. The iron pseudopotential treats a [Mg]3pd64s2 electron configuration
as valence states, and a 2×2×2 grid of k-points is used for all simulations. Simulations on
hydrogen and the solution were performed with a 900 eV cutoff energy for the plane wave
expansion, while a 300 eV cutoff was used for iron. A time step of 0.2 fs was used for all liquid
simulations, a 0.5−1.0 fs time step was used for high and low temperature iron simulations
respectively. The ∆Gsol results were confirmed to be well-converged with respect to the
energy cutoff and time step. Prohibitively long simulation times required that convergence
with respect to finer k-point meshes be verified over a subset of configurations generated by
a simulation with a 2×2×2 grid. A snapshot from a representative DFT-MD simulation of
a iron atom dissolved in hydrogen is shown in Fig. 3.2

Iron simulations assume an hcp or fcc structure within their respective stability regimes
[155, 181]. We confirmed Fe to be solid up to 20000 K at 4 TPa, and to be a liquid at
temperatures as low as 15000 K at 1 TPa. We also confirmed that the Gibbs free energy
favors hcp stability over fcc at 1 TPa, though the difference is negligible for our subsequent
analysis of dissolution. We found 32 atom supercells to be sufficient for Fe simulation. Finite
size effects required that we use large 256 atom supercells for hydrogen, to which one Fe atom
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Table 3.1: Thermodynamic parameters derived from DFT-MD simulations.

P T System Phase ρ F U G S
(GPa) (K) - - (g/cm3) (eV) (eV) (eV) (kb/K)

400 2000 Fe32 hcp 14.408 −190.8(4) −154.4(0) 323.3(4) 211.(4)
. . H256 liq 1.2709 −415.6(5) −228.(0) 419.37(9) 1088.(2)
. . H256Fe liq 1.5192 −423.8(1) −234.(0) 427.1(8) 1101.(6)

1000 2000 Fe32 hcp 18.279 −12.4(0) 18.1(2) 1000.8(5) 177.(1)
. . H256 liq 1.8916 23.0(3) 175.9(6) 1425.6(6) 887.(3)
. . H256Fe liq 2.2534 20.4(1) 175.(2) 1454.7(1) 898.(3)

1000 2000 Fe32 fcc 18.269 −10.35(0) 19.8(0) 1003.4(6) 174.(9)
. . H256 liq 1.8916 23.0(3) 175.9(6) 1425.6(6) 887.(3)
. . H256Fe liq 2.2534 20.4(1) 175.2(3) 1454.7(1) 898.(3)

1000 15000 Fe32 liq 16.970 −506.2(1) 12(7). 585.(2) 49(0).
. . H256 liq 1.6315 −2064.1(1) 595.(4) −437.9(2) 2057.(5)
. . H256Fe liq 1.9468 −2091.9(7) 598.(7) −431.7(8) 2081.(6)

4000 2000 Fe32 fcc 28.374 754.91(4) 777.6(2) 3365.97(1) 131.(8)
. . H256 liq 3.6375 1392.3(8) 1487.6(4) 4310.0(0) 552.(7)
. . H256Fe liq 4.3078 1412.3(8) 1508.(4) 4413.4(7) 55(7).

4000 15000 Fe32 fcc 27.826 382.1(9) 87(5). 3045.7(0) 38(1).
. . H256 liq 3.3618 −392.9(3) 1917.(3) 2763.9(8) 1787.(3)
. . H256Fe liq 3.9865 −392.2(5) 194(3). 2850.7(4) 1807.(2)

4000 20000 Fe32 fcc 27.550 176.(9) 92(2). 2866.(8) 43(2).
. . H256 liq 3.2731 −1284.5(8) 208(1). 1957.2(6) 1952.(6)
. . H256Fe liq 3.8824 −1294.0(9) 210(4). 2035.5(1) 1972.(0)

was added for the solution. Cubic supercells are used for fcc and liquid runs. In order to
maintain the same number of atoms for the hcp an orthogonal supercell with edges defined
the combination of hexagonal unit cell vectors a,a + b, and c.

Table 3.2: Gibbs free energy of solvation for Fe in liquid H

P T Fe Phase ∆G
(GPa) (K) - (eV)
400 2000 hcp −2.2 ± 0.14
1000 2000 hcp −2.5 ± 0.12
1000 2000 fcc −2.3 ± 0.13
1000 15000 liq −12.2 ± 0.20
4000 2000 fcc −1.71 ± 0.056
4000 15000 fcc −8.42 ± 0.066
4000 20000 fcc −11.34 ± 0.078

Cell volumes at each temperature were determined by fitting a pressure-volume polytrope
equation of state to short DFT-MD simulations. The resulting DFT pressures were all within
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Figure 3.2: Simulation snapshot showing the electron density of an iron atom dissolved in
liquid metallic hydrogen.

0.1% of the target value. Gibbs free energies were computed for the three systems, Fe32, H256

and H256Fe1, using the thermodynamic integration method with simulation times of 1.0 ps
for H256 and H256Fe1 and 2.5−5.0 ps for Fe. H256 and H256Fe1 runs with λ = 1 were extended
to 4.0 ps for precise calculations of the internal energy, which allows for determination of the
entropic component of the Helmholtz free energy. The calculated energies and entropy are
presented in Tab. 3.1, along with the density. The Gibbs free energy of solvation, calculated
using Eq. 3.1 , is presented in Tab. 3.2 for each pressure-temperature condition. A negative
∆Gsol implies that the Gibbs free energy of the solution is lower than that of the separated
phases. Therefore, dissolution is favored at a solute concentration higher than 1:256.

3.3 Simulation results

We find dissolution of iron to be strongly favorable at conditions corresponding to the in-
teriors of gas giants. Fig. 3.3 shows the variation of ∆Gsol with temperature and pressure.
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∆Gsol exceeds −10 eV per iron atom for plausible temperatures of Jupiter’s core. Dissolu-
tion remains favorable even at temperatures far below those predicted by model adiabats
[130, 131]. The energetics are only weakly dependent on pressure, and ∆Gsol becomes in-
creasingly negative with decreasing pressure. The solubility increases with a nearly linear
trend in T, yielding slope of ∼0.53 meV/K. As a result, solubility is favored through the en-
tire range of conditions considered, and likely the entire range for metallic hydrogen regions
of giant planets.
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Figure 3.3: Gibbs free energy of solvation for solid Fe in liquid metallic hydrogen. Negative
values favor dissolution for a solute ratio of 1:256.

Fig. 3.4 shows a breakdown of the data into contributions by various thermodynamic
parameters. Included in the figure are: ∆Fsol, ∆Usol, P∆Vsol and −T∆Ssol, respectively,
the Helmholtz free energy, internal energy, volumetric work and entropic contributions con-
tributions to ∆Gsol. Note that ∆Fsol, ∆Usol and P∆Vsol are calculated independently, while
∆Gsol = ∆Fsol + P∆Vsol and −T∆Ssol = ∆Fsol −∆Usol are derived. The trend of solubility
with temperature is dominated by the entropic term. The high solubility at low temperatures
is reflected in the negative values of ∆Usol, indicating that the mixed system is energetically
favorable independently of the entropy term.

Our calculations neglect any interactions between iron atoms in solution, and thus rep-
resent solubility in the low-concentration limit. ∆Gsol can be related to the volume change
associated with the insertion of an iron of atom into hydrogen, as other contributions are
constant with respect concentration. It can be shown that results for simulations with a 1:n
solute ratio can be generalized to a ratio of 1:m using

∆Gc ≈ F0(HmFe)− F0(Hm)− F0(Fe)− [F0(HnFe)− F0(Hn)− F0(Fe)] (3.2)

= −kBT log

{[
V (HnFe) + m−n

n
V (Hn)

]m+1
[V (Hn)]n[

V (Hn)m
n

]m
[V (HnFe)]n+1

}
, (3.3)
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Figure 3.4: Breakdown of ∆Gsol into contributions from: internal energy, ∆Usol, pressure
effects, P∆Vsol, and entropic effects, −T∆Ssol. Plots show variation with (a) temperature
at P=4 TPa, and (b) pressure at T=2000 K.

where ∆Gc = ∆Gsol(1 : m)−∆Gsol(1 : n), and V (Hn) and V (HnFe) are the volumes for the
simulations of hydrogen and the solution respectively. Fig. 4.11 shows the shift of ∆Gsol at 4
TPa at Fe concentrations of 1:100 and 1:1000. ∆Gsol is decreased for higher concentrations,
but not to an extent where dissolution would become disfavored. At 20000 K this difference
between 1:100 and 1:256 is <2 eV per iron atom, and at 2000 K is smaller than uncertainty
in calculated values of ∆Gsol.

The nature of the Fe-H system poses additional numerical challenges compared to other
solutes considered previously [202, 201, 203, 65]. These can be attributed to the compara-
tively large change in volume and electron density associated with the insertion of an iron
atom into metallic hydrogen. We found it more efficient to determine cell volumes by fit-
ting an equation of state to a collection of MD simulations at constant volume, rather than
performing extended constant pressure simulations. Finite size effects were also found to
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Figure 3.5: Shift in ∆Gsol from a system with and Fe:H ratio of 1:256 to 1:100 and 1:1000
in the low-concentration limit.

be more significant for the Fe-H system, due to iron’s relatively large volume and number
of valence electrons. Fig. 3.6 4 shows the convergence of a difference in internal energy be-
tween H and H-Fe for MD simulations with 128, 256 and 512 hydrogen atoms. We find 256
hydrogen atoms to be necessary in contrast to the previous studies that required only 128.
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Figure 3.6: Energy of insertion for a single Fe atom into supercells of liquid metallic hydrogen
containing 128, 256, and 512 atoms. Finite size effects are significant for H128, but are
negligible within error for H256.

The convergence with k-point grid resolution is also slower than in previous studies,
and presents the greatest uncertainty in this study. MD calculations with a 3×3×3 k-point
grid are prohibitively expensive. An estimate of this error for the results presented here is
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obtained by evaluating the internal energy over configurations sampled from a MD trajectory
with a 2×2×2 k-point grid. Fig. 3.7 shows this estimated correction of ∆Gsol for the k-point
grid used. The shifts are on the order ∼1 eV per iron atom, but are consistently negative
for both quantities, leading to dissolution being more favorable.
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Figure 3.7: Estimated corrections to ∆Gsol and ∆Gsol coarseness of k-point grid used in
DFT-MD runs. DFT calculations with a 3× 3× 3 k-point grid were performed sampling a
trajectory generated by an MD simulation with a 2× 2× 2 k-point mesh.

3.4 Discussion

With the results of previous studies [201, 203, 65], we can now present a comprehensive
picture for the solubility of typical core materials in liquid metallic hydrogen. Dissolution
is strongly favored for both iron and water ice. However, for water the high solubility is
attributed entirely to the entropy, whereas iron has a favorable internal energy component
that favors dissolution at low temperatures. Both phases are found to be soluble throughout
the entire metallic hydrogen region of both Jupiter and Saturn. The rocky components,
MgO and SiO2, have more moderate solubilities, with SiO2 being slightly higher. The satu-
ration curves are, however, less steep than the adiabats for Jupiter and Saturn. As a result,
solubility is favored for Jupiter’s core, but the rocky components of Saturn’s core may be
stable given the present uncertainty in the planet’s adiabat.

The rocky components are found to be stable at lower pressures, approaching the metal-
lic transition. If Mg and Si are advected upwards in sufficient concentration, they may
precipitate, while Fe and H2O would remain in solution, at least to the molecular-metallic
transition. The presence of a significant dissolved component at shallow depths may have
consequences for the density profile and transport properties of hydrogen, which influence
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thermal structure and magnetic field generation. Fig. 3.8 shows the relative solubility fields
of these candidate core materials.

Figure 3.8: Solubility fields for MgO and H20 ice compared to P-T state for Jupiter and
Saturn core-envelope boundary. Figure from Wilson and Militzer [203], credit: Hugh Wilson.

Core erosion is thermodynamically favorable in gas giant planets, with the possible excep-
tion of smaller, cooler planets, like Saturn. For these planets, the outer icy layers are soluble,
but the rocky layers may not be. The innermost iron component, though soluble, might re-
main isolated from reaction with hydrogen. This might allow Saturn to have a larger, less
eroded core than Jupiter, a result consistent with current observational constraints. Nev-
ertheless, our results imply that confirmation of a massive core for Jupiter would support
the core-accretion model over gravitational collapse. While erosion of such a core may be
slow due to inefficient double-diffusive convection [175, 36, 111, 133], settling of dispersed
refractory material to form a core is inconsistent with our results. Late formation of a core
would require a large amount material from captured planetesimals surviving descent to the
planet’s center.

It may be possible to attribute some emerging trends in exoplanet mass-radius relation-
ships to the difference in solubilities between rock and ice, or rock and metal. However, as
we have shown, such thermodynamic differences are likely to only be significant in smaller,
cooler planets, where redistribution of dense material by double-diffuse convection would be
least efficient. The energetics of the dissolution reaction should be insignificant compared
to the role of density in the redistribution of dense material. The work required to raise an
iron of atom to the molecular-metallic transition is on the order of 1000 eV, whereas the
contribution from the dissolution reaction is ∼1−10 eV. We conclude that the process of core
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erosion is thermodynamically consistent with ab initio simulations of the relevant materials,
and its significance warrants close consideration in future models of giant planet evolution.
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Chapter 4

High temperature miscibility of
Terrestrial Mantles and Cores

4.1 Motivation

Terrestrial planets are, to first order, made up of a metallic iron core and a mantle composed
of silicate and oxide minerals. Chondritic meteorites show that these materials initially
condensed together from the protoplanetary nebula, but became free to separate and grav-
itationally stratify as planetesimals grew. Numerous scenarios have been put forward to
describe how these reservoirs interact depending on the pressure, extent of melting, and
the specific assumptions of rocky phases [177, 167, 157]. These typically assume the major
components occur in two immiscible phases. Additionally, most studies assume that element
partitioning between the two phases is similar to that observed in experiments performed
at much lower temperatures [125]. In the case of a hot early history of a growing planet,
neither assumption is necessarily correct. At sufficiently high temperatures, entropic effects
dominate and any mixture of materials will form a single, homogeneous phase. It is there-
fore necessary to consider a high temperature mixture of the ‘rocky’ and metallic terrestrial
components. The presence of such a mixed phase will affect the chemistry of iron-silicate
differentiation on the early Earth.

Here we consider a simple representative material for the mixed rock-metal phase as a
mixture of Fe and MgO formed via the reaction

MgOsol/liq + Feliq ⇒ FeMgOliq. (4.1)

We determine the stability of these phases using first-principles calculations. At a given
pressure, a system with two separate phases can be described in terms of a miscibility gap.
At low temperatures, homogeneous mixtures with intermediate compositions are thermody-
namically unstable and a heterogeneous mixture of two phases with compositions near the
endmembers is preferred. The exsolution gap is bounded by a solvus that marks the tem-
perature above which a single mixed phase is stable, and the maximum temperature along
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the solvus is referred to as the solvus closure temperature. Here we calculate the Gibbs free
energy of the mixture and the endmembers to determine the solvus closure temperature for
mixture similar to the bulk-composition of a terrestrial planet. These results can inform
future work, by providing the conditions where rock-metal miscibility plays a role in the
differentiation of terrestrial planet interiors.

An order of magnitude calculation shows the gravitational energy released in the forma-
tion of an Earth-mass body, if delivered instantaneously, is sufficient to raise temperatures
inside the body by ∼40,000 K. Redistribution of mass within the body during core formation
can account for another ∼4,000 K increase. This energy is released over the timescale of
accretion, ∼108 years [37], with efficient surface heat loss through a liquid-atmosphere in-
terface [1, 54]. However, simulations of the final stages of planet growth [29, 37, 31] suggest
that near-instantaneous release of large quantities of energy through giant impacts is the rule
rather than the exception. Simulations of the ‘canonical’ moon-forming impact hypothesis
[32], in which a Mars-sized body collides with the protoearth, find fractions of the target’s
interior shocked well above 10,000 K. More recently, dissipation of angular momentum from
the Earth-Moon system by the evection resonance has loosened physical constraints on the
impact, suggesting that the formation of the moon is better explained by an even more en-
ergetic event than the ‘canonical’ one [33, 45]. It is, therefore, difficult to precisely constrain
the temperature of the Earth’s interior in the aftermath of the moon forming impact, much
less that of other terrestrial planets with even more uncertain impact histories. Regardless,
there is evidence for giant impacts throughout the inner solar system, implying temperatures
significantly higher than the present day Earth may have been common. In addition to high
temperatures, giant impacts involve significant physical mixing of iron and rocky materials
[46]. Thus, miscibility may be important even if the impacting bodies have iron cores that
differentiated at lower temperatures and pressures.

Differentiation and core formation is a key event or series of events in terrestrial planet
evolution. The timing and conditions of differentiation have important consequences for
the evolution of the planet, through its effect on the distribution of elements throughout
the planet’s interior. The distribution of elements affects the gravitational stability of solid
layers in the mantle, the location of radioactive heat sources, and the nature of the source of
buoyancy driving core convection and magnetic field generation. Each of these subsequently
affect the thermal evolution of the planet. If this process occurs near the solvus closure
temperature, there are likely to be physical and chemical differences from the processes at
conditions where the phases are completely immiscible. We include a discussion of some of
these processes in Section 4.3.

Simulated system

Modern high pressure experimental techniques, using static or dynamic compression tech-
niques, can reach megabar pressures [21]. However, experiments at simultaneous high
pressures and temperatures have limitations. Interpretation of mixing processes during
shock wave experiments is difficult, and the samples are not recoverable. Meanwhile, laser
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heated diamond anvil cells experience extreme temperature gradients and require survival of
quenched texture to interpret. In both cases, the methods only cover a small fraction of the
P -T range expected in the aftermath of a giant impact. As a result, simulations based on
first-principles theories are an appropriate means of constraining material properties over a
range of such extreme conditions.

We performed density functional theory molecular dynamics (DFT-MD) simulations for
phases in a model reaction between liquid iron, and solid (B1) or liquid magnesium oxide.
The change in Gibbs free energy of this system per formula unit FeMgO is described as

∆Gmix =
1

24
G(FeMgO)24 −

1

32

[
G(MgO)32 +GFe32

]
(4.2)

where G(MgO)32 and GFe32 are the Gibbs free energies of a pure MgO and iron endmembers
with subscripts referring to the number of atoms in the periodic simulation cell. G(FeMgO)24 is
the Gibbs free energy of 1:1 stoichiometric liquid solution of the two endmembers. Comparing
Gibbs free energies among a range of compositions, we find the temperature for mixing of
the phases in the 1:1 ratio to be a good approximation for the solvus closure temperature.

MgO is the simplest mantle phase to simulate, and a reasonable starting point for a study
of the miscibility of terrestrial materials. Up to ∼400 GPa, MgO remains in the cubic B1
(NaCl) structure [19], meaning simulations of only one solid phase were necessary for the
rocky endmember. In order to describe a similar reaction for MgSiO3 perovskite, the Gibbs
free energy of MgO and SiO2 must also be calculated to address the possibility of incongruent
dissolution of the solid phase [19]. More importantly, high pressure experiments observing
reactions of silicates with iron have demonstrated the MgO component has by far the lowest
solubility in iron up to ∼3000 K [103, 150]. This suggests our results can be interpreted as
an upper bound for the solvus closure temperature with more realistic compositions.

It is worth emphasizing that the mixed FeMgO phase is unlike any commonly studied
rocky phase, in that it does not have a balanced oxide formula. This is by design and is
necessary for the mixing of arbitrary volumes of the metallic and oxide phases. This is a
separate process from the reaction of the FeO component which transfers O to the metallic
phase at lower temperature, and which is primarily controlled by oxygen fugacity rather
than temperature [185]. We treat the mixed phase as a liquid at all conditions. Although
we cannot absolutely rule out the possibility of a stable solid with intermediate composition,
such a phase would require a lower Gibbs free energy, and therefore is consistent with treating
our results as an upper bound on the solvus closure temperature.

All DFT simulations presented here were performed using the Vienna ab initio simulation
package (VASP) [109]. VASP uses projector augmented wave pseudopotentials [18] and the
exchange-correlation functional of Perdew, Burke and Ernzerhof [154]. Although the DFT
formalism is based on a zero-temperature theory, DFT-MD simulations at high temperatures
have been shown to agree with theory developed for warm dense matter [52]. We use an
iron pseudopotential with valence states described by a [Mg]3pd64s2 electron configuration.
For consistency, all simulations use Balderesci point sampling, a 600 eV cutoff energy for
the plane wave expansion and temperature dependent Fermi-smearing to determine partial
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orbital occupations. A time step of between 0.5 and 1.0 fs is used depending on the temper-
ature, with the smaller time step used for all simulations with temperatures above 6000 K.
We confirmed that the resulting molecular dynamics results are well-converged with respect
to the energy cutoff and time step. All presented results involve molecular dynamics simu-
lation lengths of at least 2 ps simulated time at each, with longer simulation times having
an insignificant effect on the results of the thermodynamic integration. The largest source
of uncertainty was the finite size effect, which we discuss in detail in Section 4.2.

4.2 Results

Table 4.1 shows the results of the calculations for each composition and P -T condition. It
includes the density along with the calculated pressure, internal energy, entropy and Gibbs
free energy. The stable phase at each condition is determined using Eqn. 4.2. The point
at which the trend in ∆Gmix at constant P changes sign is the inferred solvus temperature
at the 1:1 stoichiometric composition. Fig. 4.1 shows an example of this trend in ∆G for
the 1:1 mixture at P = 50 GPa, along with its components ∆U , ∆PV and −∆TS. Using
the convention from Eqn. 4.2, positive values favor the separation of the material into the
endmember phases, while negative values favor the single homogeneous mixed phase. The
contributions of the internal energy and volumetric terms are positive, while the entropy
provides the negative contribution that promotes mixing at sufficiently high temperature.

Using additional calculations at P = 50 GPa, we estimated uncertainties in our calcu-
lated Gibbs free energies. The most significant contribution to the uncertainty comes from
the finite size of the simulation cells. We estimate the magnitude of this uncertainty by com-
paring results from larger simulated cells to those of the original system. Fig. 4.2 compares
the values of ∆Gmix for Fe and FeMgO cells with up to twice the number of atoms, and
MgO with up to 100 atoms per cell. From this, we estimate a maximum shift of < 0.1 eV
per formula unit. This corresponds to an uncertainty in temperature of ∼200 K, roughly an
order of magnitude larger than the statistical precision of the calculation. The combined ef-
fect of increasing cell size for all systems leads consistently to lower values of ∆Gmix at both
temperatures, and thus, lower predicted solvus closure temperatures. For the subsequent
analysis, we consider an estimated uncertainty defined as the largest (positive or negative)
shift in the Gibbs free energy for each phase. It should be noted that these estimated error
bars can not be strictly viewed as statistical uncertainties, since they are unidirectional and
based on a small number of independent calculations. They suggest the likely magnitude by
which similar shifts in the calculated Gibb’s free energies will effect the calculated transition
temperature at different P − T conditions.

The effect of pressure and temperature on ∆Gmix is shown in Fig. 4.5. As pressure
increases, the slope of ∆Gmix with T remains nearly constant for all simulations with liquid
MgO, but the values are shifted to higher temperatures. This means that the solvus closure
temperature has a positive slope with pressure over the entire range of conditions considered.
There is a noticeable change in the slope of this quantity when MgO melts. This corresponds
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Figure 4.1: Gibbs free energy change per formula unit, Gmix of the reaction MgOliq + Feliq →
FeMgOliq at P = 50 GPa (red). Independently calculated components of ∆Gmix: ∆U (black),
∆PV (blue), and −∆TS (green). Positive values favor separation into end member phases,
while negative values favor a single mixed phase. ∆PV values presented here use the target
pressure. Error bars represent the integrated error from the 1 σ statistical uncertainty of the
molecular dynamics simulations.

with a weaker dependence on pressure at high pressures, where the solvus temperature is
below the melting temperature of MgO.

When determining the energetics of the mixed FeMgO, phase it is important to verify that
the simulation remain in a single mixed phase. At temperatures sufficiently close to the solvus
closure temperature the system should behave as a super-cooled homogeneous mixture, while
at sufficiently low temperatures the simulations could, in principle, spontaneously separate



CHAPTER 4. HIGH TEMPERATURE MISCIBILITY OF TERRESTRIAL MANTLES
AND CORES 37

4500 5000 5500 6000 6500 7000 7500 8000

 T (K)

0.6

0.4

0.2

0.0

0.2

0.4

∆
G

m
ix
 (

eV
)

32Fe, 30MgO, 24FeMgO

64Fe, 30MgO, 24FeMgO

32Fe, 50MgO, 24FeMgO

32Fe, 30MgO, 48FeMgO

64Fe, 40MgO, 30FeMgO

64Fe, 50MgO, 48FeMgO

Figure 4.2: Quantifying the finite size effect on ∆Gmix for simulations of the reaction
MgOliq + Feliq → FeMgOliq at P = 50 GPa with different cell sizes. In black are the re-
sults for the systems Fe32, Mg32O32 and Fe24Mg24O24 used at the other P-T conditions. The
other lines show the shift in ∆Gmix obtained when the calculation is repeated for with a
larger cell for one (dashed lines) or all (solid lines) of the systems.

into two phases. This would bias the results as interfacial energies between the separating
phases would be included in the calculated Gibbs free energy. We were unable to detect
phase separation by visual inspection of various of snapshots as has been seen for hydrogen-
helium mixtures in [169]. The pair correlation function, g(r), can be used as a proxy for
separation of phases [169].

Fig. 4.3 shows the Fe-Fe g(r) for simulations of the mixed FeMgO phase at 50 GPa.
For temperatures significantly below solvus closure temperature, 3000 and 5000 K, there
are slight negative deviations of the g(r)Fe−Fe at large r from their expected asymptote to
unity. This is consistent with clustering into MgO and Fe-rich regions, and may indicate
spontaneous phase separation at temperatures well below the inferred solvus closure tem-
perature. These deviations are minimal or not observed in simulations near or above the
inferred solvus closure temperature. We performed additional simulations at temperatures
close to the solvus closure temperature to verify that the Gibbs free energy changes linearly
as a function of temperature, which is the expected behaviour without spontaneous phase
separation. In spite of deviations in g(r), we note that including the low temperature simu-
lations in our calculation of the solvus closure temperature does not significantly change the
result at any pressure.

We also studied the effect of composition on the solvus temperature. Calculations were
performed on four additional intermediate compositions between the Fe and MgO endem-
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Figure 4.3: Fe-Fe pair correlation functions for mixed Fe + MgO phase. Compares the
spatial distribution of atoms in simulations at 50 GPa with different temperatures. The
3000 K and 5000 K asymptote to values notably less than one, while temperatures near or
above the solvus closure temperature do not show such a deviation at large r.

bers. Fig. 4.6 shows a convex-hull in GFe1−xMgOx and ∆Gmix at 50 GPa and 5000 K. This
corresponds to a temperature below the calculated solvus temperature. The Gibbs free en-
ergies of all intermediate components are above the mixing line between the end members,
and form a smooth function with composition. This is consistent with a binary system with
a miscibility gap. Using linear interpolation between this convex hull and one at 7500 K, we
estimate the shape of the miscibility gap at 50 GPa, as shown in Fig. 4.4. The miscibility gap
is notably asymmetric, with temperatures decreasing faster towards the Fe-rich endmember
than the MgO-rich end. A similar, more pronounced asymmetry has been experimentally
determined for the Fe-FeO system at lower pressures [149, 100]. In spite of this, the shape of
the solvus at intermediate compositions, ∼0.3-0.9 molar fraction MgO, is relatively flat. As
a result, the temperatures predicted for a 1:1 mixture provide a good estimate for the solvus
closure temperature. We note, however, that the shape of miscibility gap may be sensitive
to uncertainties from the finite size effect. Considering the estimated errors from the finite
size effect test, we can only constrain to be within that ∼0.3-0.9 XMgO range. Regardless of
this composition our uncertainty in the temperature of solvus closure remains ∼ 200 K.

Fig. 4.7 summarizes the results, showing all the conditions at which simulations were
performed. We find the solvus closure at ambient pressure to be 4089+25

−235 K. While there
is little experimental work on this exact system, our results are superficially consistent with
extrapolations of the phase diagram for the Fe-FeO system from low temperatures [149, 123],
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Figure 4.4: Solvus phase diagram of the Fe-MgO system at P = 50 GPa. The shape is
consistent with the composition XMgO = 0.5 being representative for estimating the solvus
closure temperature at other pressures. The filled blue region shows an estimate of the
uncertainty in transition temperature arising from the uncertainties in G in Fig. 4.6.

and with the ‘accidental’ discovery of the Fe-silicate solvus by [197]. We find that the solvus
temperature increases with pressure to 6010+28

−204 K at 50 GPa, but its slope decreases signifi-
cantly at higher pressures, with a temperatures of 6767+14

−135 K at 100 GPa and 9365+14
−130 K at

400 GPa. This transition also corresponds roughly to the pressure where the trend crosses
the MgO melting curve [2, 13, 19]. Indeed, the simulations used to infer the closure temper-
ature at these pressures used the solid (B1) structure of MgO. Unfortunately, it is difficult
to check whether the change in slope is a direct result of this phase transition, as liquid
MgO simulations rapidly freeze at temperatures far below the melting curve. Conversely,
the liquidus of a deep magma ocean might be below the solvus at these temperatures due to
the effect of an SiO2 or FeO component in the silicate/oxide endmember [47, 207]. However,
extrapolation of ∆Gmix from simulations with liquid MgO at higher temperatures (Fig. 4.5)
suggest that the change in slope occurs occurs in liquids as well. We estimate shifts in the
inferred solvus closure temperature from finite size effects on the order of 200 K. The actual
solvus closure temperature may also be shifted by up to a couple hundred Kelvin, if we also
consider the uncertainty in the solvus shape (Fig. 4.6), since our results refer specifically
the solvus temperature for a 1:1 stoichiometric mixture. The observed change in slope of
the solvus temperature and the relation to the pure MgO melting curve are, however, robust
against uncertainties of this magnitude.
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Figure 4.5: Gibbs free energy of mixing for MgO and liquid Fe. Solid lines show conditions
where MgO was simulated as a liquid, and dashed lines where MgO is in its (B1) solid phase.
The filled green region shows an estimate of the uncertainty from finite size effects, taken as
the maximum shifts in ∆Gmix observed our tests of larger cells (Fig. 4.2).

Simulation results

Table 4.1 shows the results of thermodynamic integration calculations performed for each
composition and P -T condition. It includes the density along with the calculated pressure,
internal energy U , entropy S, and Gibbs free energy, G. Calculations are specified by
pressure, P , temperature, T , and the atomic composition and phase.

To determine the density ρ for a given P and T of interest, we fitted equations of state
to results from DFT-MD simulations. P and U are time-averaged results from DFT-MD
simulations with 1σ statistical error quoted. S and G are calculated from the two step
thermodynamic integration technique. For quantities calculated using the thermodynamic
integration, the quoted errors were derived by propagating the errors from each integration
point.

Simulations of Fe32, Mg32O32 and Mg24Fe24O24 are included for every P -T condition. Ad-
ditional compositions (Mg36Fe4O36, Mg30Fe13O30, Mg16Fe38O16 and Mg6Fe54O6) were per-
formed for 50 GPa at 5000 and 7500 K, to test the compositional dependence of the Fe-MgO
solvus. Finally, simulations with 1:1 stoichiometries but larger cells Fe64, Mg30Fe30O30,
Mg45Fe45O45 Mg40O40, and Mg50O50.



CHAPTER 4. HIGH TEMPERATURE MISCIBILITY OF TERRESTRIAL MANTLES
AND CORES 41

Table 4.1: Thermodynamic functions derived from DFT-MD simulations (Part 1/2).

P T system ρ P U S G
(GPa) (K) (g/cm3) (GPa) (eV) (kB) (eV)

0 4000 Mg24Fe24O24,liq 2.861 −0.41(17) −323(1) 1064(4) −689.3(1)
. . Fe32,liq 6.885 0.06(21) −206.53(9) 496.7(4) −377.74(3)
. . Mg32O32,liq 2.003 0.60(14) −275.0(5) 776(2) −542.40(5)
0 5000 Mg24Fe24O24,liq 2.556 0.15(16) −289(1) 1152(3) −785.4(2)
. . Fe32,liq 6.340 −0.05(34) −189.8(1) 540.1(4) −422.52(2)
. . Mg32O32,liq 1.660 0.10(10) −242.8(8) 860(2) −613.17(6)
0 6000 Mg24Fe24O24,liq 2.195 0.639(88) −251.9(8) 1231(2) −888.3(1)
. . Fe32,liq 5.740 −0.02(12) −170.8(1) 580.2(3) −470.80(3)
. . Mg32O32,liq 1.435 0.707(49) −213(1) 924(2) −690.65(9)

50 5000 Mg24Fe24O24,liq 5.237 49.28(40) −315.5(7) 963(2) −502.0(2)
. . Fe32,liq 8.805 51.36(34) −203.3(3) 475.0(6) −302.73(2)
. . Mg32O32,liq 3.582 51.41(26) −261.4(5) 703(1) −377.59(9)
. . Mg6Fe54O6,liq 7.797 50.61(43) −370.3(5) 988(1) −579.56(9)
. . Mg16Fe38O16,liq 6.347 49.70(24) −338.0(8) 995(2) −540.61(8)
. . Mg30Fe13O30,liq 4.461 49.73(22) −302.3(7) 911(2) −470.07(8)
. . Mg36Fe4O36,liq 3.838 47.6(12) −317(3) 855(8) −459.4(1)
. . Mg30Fe30O30,liq 5.237 47.94(21) −400(1) 1190(3) −627.26(8)
. . Mg48Fe48O48,liq 5.237 48.49(21) −640(1) 1908(3) −1004.9(2)
. . Fe64,liq 8.805 50.57(18) −407.6(3) 947.6(6) −605.53(2)
. . Mg40O40,liq 3.582 40.2(11) −365(3) 788(8) −470.9(2)
. . Mg50O50,liq 3.582 44.43(37) −438(2) 1023(4) −587.2(2)

50 6000 Mg24Fe24O24,liq 5.083 49.36(25) −291.5(7) 1027(2) −587.3(1)
. . Fe32,liq 8.537 50.95(21) −191.6(1) 506.5(3) −345.03(2)
. . Mg32O32,liq 3.446 49.50(24) −243.1(5) 754(1) −439.09(4)

50 7500 Mg24Fe24O24,liq 4.868 50.09(41) −254(2) 1110(3) −725.7(1)
. . Fe32,liq 8.164 50.59(52) −173.9(3) 545.9(5) −413.29(2)
. . Mg32O32,liq 3.301 51.09(60) −212(1) 823(2) −540.85(6)
. . Mg6Fe54O6,liq 7.221 49.04(17) −317.2(3) 1119.5(5) −806.98(5)
. . Mg16Fe38O16,liq 5.867 49.54(29) −278.9(8) 1142(1) −772.40(6)
. . Mg30Fe13O30,liq 4.115 49.90(27) −243.4(7) 1058(1) −683.67(8)
. . Mg36Fe4O36,liq 3.538 50.10(17) −250.7(7) 1020(1) −664.90(8)
. . Mg30Fe30O30,liq 4.868 49.80(16) −321(1) 1382(2) −907.77(9)
. . Mg48Fe48O48,liq 4.868 50.13(15) −507(1) 2222(2) −1451.7(2)
. . Fe64,liq 8.164 50.62(24) −347.7(3) 1090.7(5) −825.75(2)
. . Mg40O40,liq 3.301 50.75(23) −264.9(7) 1026(1) −674.98(4)
. . Mg50O50,liq 3.301 51.40(27) −330(1) 1284(2) −843.19(7)
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Table 4.2: Thermodynamic functions derived from DFT-MD simulations (Part 2/2).

P T system ρ P U S G
(GPa) (K) (g/cm3) (GPa) (eV) (kB) (eV)

50 10000 Mg24Fe24O24,liq 4.546 51.31(32) −197(1) 1210(2) −976.4(1)
. . Fe32,liq 7.536 49.92(47) −142.0(2) 601.3(3) −537.28(3)
. . Mg32O32,liq 3.054 50.64(51) −163(1) 909(2) −727.8(1)

100 6000 Mg24Fe24O24,liq 6.144 100.54(60) −264(1) 969(3) −375.5(1)
. . Fe32,liq 9.771 97.45(69) −188.0(5) 476(1) −244.43(4)
. . Mg32O32,sol 4.432 100.04(18) −261.7(3) 598.8(7) −269.70(8)

100 6700 Mg24Fe24O24,liq 6.042 98.34(38) −254.2(7) 998(1) −434.5(1)
. . Fe32,liq 9.660 99.69(82) −179.6(5) 495(1) −273.67(4)
. . Mg32O32,sol 4.381 100.46(35) −250.5(6) 627(1) −307.19(8)

100 7000 Mg24Fe24O24,liq 6.027 101.60(35) −238.4(8) 1027(1) −461.2(1)
. . Fe32,liq 9.611 100.24(30) −176.2(2) 502.5(3) −286.64(2)
. . Mg32O32,sol 4.360 100.53(42) −245.4(3) 637.3(6) −323.25(7)

100 8000 Mg24Fe24O24,liq 5.932 103.41(68) −218(1) 1068(2) −551.3(2)
. . Fe32,liq 9.388 99.43(71) −165.0(5) 527.1(8) −331.12(4)
. . Mg32O32,liq 4.034 100.57(67) −183.8(7) 785(1) −393.43(7)

100 10000 Mg24Fe24O24,liq 5.664 100.86(98) −176(2) 1147(2) −742.5(2)
. . Fe32,liq 8.998 98.79(49) −142.5(4) 567.2(4) −425.41(2)
. . Mg32O32,liq 3.842 99.23(52) −145(2) 856(2) −534.78(8)

100 15000 Mg24Fe24O24,liq 5.157 101.17(74) −75(2) 1281(2) −1267.13(10)
. . Fe32,liq 8.145 102.48(80) −81.2(5) 645.5(4) −688.15(2)

400 8000 Mg24Fe24O24,liq 9.117 398.69(56) −24(1) 921(2) 390.9(2)
. . Fe32,liq 13.469 397.7(10) −93.1(8) 453(2) 145.0(2)
. . Mg32O32,sol 6.487 399.95(25) −69.8(3) 580.4(5) 354.3(1)

400 9300 Mg24Fe24O24,liq 9.010 400.51(49) 5(2) 974(2) 285.7(2)
. . Fe32,liq 13.583 398.04(53) −95.6(5) 445.8(7) 92.59(8)
. . Mg32O32,sol 6.434 400.24(54) −51.3(5) 615.1(8) 286.8(1)

400 10000 Mg24Fe24O24,liq 8.954 399.46(67) 17(2) 998(2) 225.5(2)
. . Fe32,liq 13.263 397.6(25) −75(2) 485(2) 65.3(1)
. . Mg32O32,sol 6.393 397.31(43) −41.8(3) 632.4(5) 249.7(1)

400 12500 Mg24Fe24O24,liq 8.753 399.86(65) 63(1) 1071(1) 2.5(2)
. . Fe32,liq 12.938 400.3(12) −46.0(9) 530.1(9) −44.36(5)
. . Mg32O32,liq 6.100 396.44(75) 61(1) 794(1) 82.3(1)

400 15000 Mg24Fe24O24,liq 8.553 399.7(11) 117(2) 1138(2) −235.9(1)
. . Fe32,liq 12.688 403.62(99) −19.3(7) 562.1(6) −161.93(3)
. . Mg32O32,liq 5.943 396.6(11) 114(2) 858(2) −95.8(1)
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Figure 4.6: Convex hull of ∆Gmix versus formula unit fraction, XMgO, for the Fe-MgO system
at P = 50 GPa and T = 5000 K (top). Difference between ∆Gmix and a mixing line between
the endmembers (bottom). The filled blue region shows an estimate of the uncertainty from
finite size effects, taken as the maximum shifts in ∆Gmix from our tests of larger Fe, MgO
and FeMgO simulations. The estimated error is weighted as a function of composition since
the finite size effects will cancel with that of the end-member as the compositions become
more similar.

Saturation limits

∆Gmix can be related to the volume change associated with the insertion of an iron of atom
into hydrogen, as other contributions are constant with respect concentration. It can be
shown that results for simulations with a 1:n solute ratio can be generalized to a ratio of
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1:m using

∆Gc ≈ F0(FemMgO)− F0(Fem)− F0(MgO)

− [F0(FenMgO)− F0(Fen)− F0(MgO)]

= −kBT log

{[
V (FenMgO) + m−n

n
V (Fen)

]m+1
[V (Fen)]n[

V (Fen)m
n

]m
[V (FenMgO)]n+1

}
, (4.3)

where ∆Gc = ∆Gmix(1 : m)−∆Gmix(1 : n), and V (Fen) and V (FenMgO) are the volumes for
the simulations of hydrogen and the solution respectively. This allows us to approximate the
saturation limit for MgO in Fe based only on ∆Gmix and V of our lowest concentration sim-
ulation, and V of both of the endmember compositions. We note that this low-concentration
limit assumes that the self interaction of the MgO ‘solute’ is negligible in our lowest concen-
tration, Mg6Fe54O6. While this is not exact, we present it as a estimate for extrapolating
these results to low MgO concentrations. In doing so, we demonstrate that these calculations
are consistent with Mg concentrations the below detection limit of laser-heated diamond anvil
cell experiments performed at lower temperatures.

4.3 Discussion

In the extreme case where a significant fraction of the planet is in a mixed iron-rock phase,
the early evolution will be quite different than prevailing theories. Differentiation of mate-
rial accreted onto the planet is delayed until the planet cools to below the solvus closure
temperature, allowing iron to exsolve and sink to the core. This study provides an estimate
of the temperatures required to mix the Mg-rich rocky mantle with the core of a terrestrial
planet. At the surface, the complete mixing of Fe and MgO is achieved at ∼4000 K (Fig.
4.7), which is well above the melting point of silicates. At core-mantle boundary pressures,
the critical temperature would be ∼7000 K. This is below higher estimates for the melting
temperature of pure MgO [2, 13, 19] and MgSiO3 perovskite [208]. There are significant dis-
parities among calculations and experiments on the melting [14, 15, 2, 207] temperatures in
the lower mantle, disagreeing even on which phases represent the solidus and liquidus. The
melting behavior in our MgO simulations are consistent with the high-temperature melting
curve of recent first-principles simulations [2, 13, 19]. Regardless, the solvus remains well
above the solidus for more realistic compositions of the silicate mantle [47, 207, 80].

Evolution of a fully mixed planet

For a sufficiently energetic impact, or series of impacts, a planet might be heated to such high
temperatures, that the entire planet maybe be an approximately homogeneous mixture of the
iron and rock components. Such an extreme scenario is unlikely for an Earth-sized planet,
and likely violates geochemical observations that preclude complete mixing of the Earth’s
primitive mantle [140]. Nonetheless, considering the evolution of a planet from a fully-mixed
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Figure 4.7: Pressure dependence of the solvus closure. The P -T condition of all thermo-
dynamic integration calculations are included. Blue markers denote conditions where MgO
was treated as a liquid. Green markers denote conditions where MgO was treated as a solid
(B1). Red circles show the solvus closure temperature inferred from simulations at the same
pressure. The estimated uncertainty in the solvus closure temperature from finite size effects
is shown by the filled red region. The dashed, black line shows the MgO melting temperature
from molecular dynamics from DFT-md with PBE exchange correlation function[19], which
is consistent with other first-principles calculations [2, 13]

state is useful for demonstrating the effects our phase diagram on the mixing behavior in
a planet. A fully mixed state is also not so far-fetched for super-Earths since heating from
release of gravitational energy scales as roughly M2/3. Fig. 4.8 shows a schematic diagram
detailing some of the processes involved with the formation of this fully mixed state.

The depth at which the phases separate from the fully mixed state is determined by
the pressure dependence of solvus closure. Following such a large impact, the planet will
quickly evolve to a magma ocean state, and a higher-temperature adiabat will be rapidly
re-established. Fig. 4.9 compares the solvus closure temperature to the calculated isentropes
of the mixed FeMgO phase. For a homogeneous, vigorously convecting liquid layer of the
planet, these approximate adiabatic temperature profiles of the interior of the planet at
different points in its evolution. The comparison is qualitatively the same if the isentropes
for either endmember is used instead of the mixed phase. At pressures above 50 GPa,
the isentropes have a notably steeper slope than the solvus closure temperature. At lower
pressures, <50 GPa the slopes are identical within the estimated uncertainty. As a result,
separation begins in the exterior of the planet and proceeds inwards as the planet cools.
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Figure 4.8: Schematic diagram showing the sequence of physical processes proposed for
core mantle mixing in the aftermath of a giant impact.

Since iron separating in the outer portion of the planet is denser than the rocky phase, it
would sink until it reached a depth where it dissolves into the mixed phase again. This may
promote compositional stratification, and possibly multi-layer convection between an upper
iron-poor and deeper iron-rich layer. The extent to which this process can stratify the planet
depends on the competition between growth of liquid Fe droplets and their entrainment in
convective flows [167].

Based on the Fe-MgO solvus closure temperature presented here, transition of a planet
from a fully mixed state to separated rocky and metallic phases would occur while the entire
planet is at least partially molten. Consequently, a fully mixed state in an Earth-mass planet
would be short lived, since cooling timescales for a deep magma ocean are short in comparison
to the timescale of accretion [1, 54]. This also means little record of such an event is likely to
survive to the present day Earth. Indeed, there is little unambiguous evidence for a magma
ocean, despite it being a seemingly unavoidable consequence of the moon-forming impact
hypothesis. The high surface temperatures of some rocky exoplanets [151] might allow for
prolonged cooling times from a such a mixed state.

At the relatively low pressures of growing planetesimals [102, 170, 198], these results
predict that core formation begins at temperatures well below the solvus. As a result,
complete mixing of a planet must overcome the gravitationally stable differentiated structure.
This will impede upward mixing of a dense core even at temperatures above solvus closure,
leading to an inefficient double-diffusive convection state like that proposed for the giant
planets [36]. Material accreted while the planet was above the solvus would, however, remain
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Figure 4.9: Calculated isentropes for the mixed FeMgO liquid phase compared to the solvus
closure temperature. These results favor the mixed phase to remain stable at depth. The
dashed, black line shows the MgO melting temperature from [19].The filled regions represent
the propagation of estimated errors from finite size effects.

in a fully mixed outer layer, and evolve according to the picture presented in Fig. 4.9.
Substantial mechanical mixing during giant impact events [32, 33, 45] would also enhance
mixing prior to the setup of a double-diffusive state.

Consequences of localized heating

Despite the implausibility of a fully-mixed earth, related processes may become important
as material is added by impacts with smaller differentiated bodies at temperatures near
or above solvus closure. Since peak shock temperatures are related to the velocity of the
impact rather than the size of the impactor, smaller-scale events can create localized regions
where the temperature exceeds the solvus closure temperature. Assuming iron from the
shocked region can be rapidly delivered to the core without significant cooling [135], material
equilibrated near or above the solvus can be delivered to the core, through a mantle of lower
average temperature. In the case that heat transfer from the sinking iron diapir is negligible,
the comparison between the solvus closure temperature and adiabats is valid for the fraction
of the planet in contact with the sinking iron. In other words, the temperature in the
sinking iron will follow a nearly adiabatic path, with Fe and MgO becoming more soluble
as the pressure rises. This means that a fraction of the iron delivered to the core could
have equilibrated with the rocky mantle at much higher temperatures than on average. The
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differentiation of a fraction of the planet in the presence of a mixed phase would likely effect
partitioning of both major and minor elements between the core and mantle. [197] suggested
that deviations in siderophile element partitioning behavior occur near the solvus closure
temperature for iron-silicate mixtures. However, this interpretation has been questioned in
light of the confounding effect of drastic changes in oxygen partitioning with pressure [61].
Better characterization of element-partitioning at such high temperatures could constrain
what fraction of the mantle could have been equilibrated in this fashion.
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Figure 4.10: A thermodynamic model depicting a hypothetical concentration curve of Mg in
iron as a function of temperature: Points above the curve are super-saturated. Rapid mixing
of a ‘cold’ reservoir ‘A’ with a ‘hot’ reservoir ‘B’ results in an intermediate, super-saturated
state ‘C’. The extent of exsolution predicted for state C, depends on the super-saturation,
and thus the shape of the concentration curve.

One important consequence of high-temperature equilibration is the delivery of excess,
nominally insoluble, light components to the core. This will occur if iron is equilibrated
with rocky materials at near-solvus temperatures, and rapidly delivered to the core before it
can cool and re-equilibrate with the mantle at lower temperatures. This would be followed
by exsolution of a Mg-rich material at the top of the cooling core. This process has been
suggested as a possible solution to the problem of the Earth’s core having insufficient energy
to generate a magnetic field before nucleation of the inner core [179]. Fig. 4.10 details the
energetics of such a process. If the interpretation of Fig. 4.9 can be extended to more iron rich
compositions, then exsolution will occur at the top of the core, depositing sediments of Mg-
rich material at the core-mantle boundary [28]. As a result, the effect of this sedimentation
on core convection is analogous to the exclusion of light elements from the growing inner core.
Fig. 4.11 shows an extrapolation of our results to predict the saturation of MgO in Fe at 50
GPa as a function of temperature. This is done using a function for G in terms of the cell
volumes derived in the low-concentration limit [201, 194]. From this we predict a >1% MgO
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saturation limit down to 4200 K, with concentrations steeply decreasing to be below detection
limits in high-pressure experiments by ∼3000 K [103, 150]. In principle, high-temperature
equilibration could also explain a bulk-mantle iron concentration in disequilibrium with the
present-day core [150, 185]. However, the shape of the MgO-rich side of the calculated
exsolution gap (Fig. 4.4) contradicts this, since the Fe content of the MgO endmember
shows a significant deviation for only a small range of temperatures.
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Figure 4.11: Extrapolated saturation limits of MgO in Fe at 50 GPa at various temperatures.
Extrapolation is under the assumption that the solution behaves in the low-concentration
limit. The dashed vertical line is the most Fe-rich composition from Fig. 4.6, from which
the extrapolation is made. The filled regions represent the propagation of estimated errors
from finite size effects.

The solvus closure temperatures for material with the bulk terrestrial planet composition
marks the transition to a regime where where miscibility is a dominant effect in the evolution
of the planet. These results present an estimate of those temperatures based on the simplified
Fe-MgO system. Where possible, our simulated system was chosen to provide an upper
limit for these temperatures, so we expect miscibility for realistic terrestrial compositions at
possibly lower temperatures than those found here. The solvus closure temperature found
here for the Fe-MgO system is at temperatures low enough, that it was likely overcome
for some fraction of the planet during accretion. Energetic impact events are now thought
to have been commonplace during the formation of the terrestrial planets, and the role of
miscibility between the most abundant rocky and metallic materials should be considered to
adequately assess their early evolution.
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Simple model of super-Earth formation

For the Earth, or similarly sized planets, a thermodynamically mixed iron-silicate may have
existed in the aftermath of a giant impact, but such a state would only be relevant to small
portion of the planet for a time period that is short compared with geological timescales.
For more massive, super-Earth exoplanets, however, it is possible that a fully-mixed region
of the planet may be long-lived. Given the large amount of gravitational energy released
during in their formation, such a mixed region may be ubiquitous for sufficiently large rocky
exoplanets.

To address this question we look at a simple model for the interior state of a homogeneous
rocky planet. This model is not meant to provide a precise determination of the interior
structure of a planet, but instead give a quick order of magnitude estimate for how large a
rocky planet would need to be to have a sustainable mixed region.

For simplicity, we consider consider the planet to be composed of a 50-50 mixture of
iron and MgO, using the thermodynamic parameters of our simulated mixture presented in
Table 4.1. We perform a linear extrapolation of ρ and S at constant P = 100 and 400 GPa.
For a constant entropy S, log10ρ and log10T are then fit as a function of log10P to provide a
simple interpolated equation of state for T (P ) and ρ(P ).

To find the profiles of these quantities through the interior of the planet we consider grid
of integrated mass m with constant spacing, extending from 0 at the center of the planet
to the total mass of the planet. Iteratively calculate the interior profiles until quantity of
interest is sufficiently converged.

We then compute the radius as a function of m

r(m) =

(
3π

4

∫ m

0

dm′
1

ρ(m′)

)1/3

. (4.4)

Next we compute the gravity as a function of r using Poisson’s equation

g(r) = 4Gπ

∫ r

0

dr′ρ(r′)r′2, (4.5)

where G is the universal gravitational constant. The gravitational energy would be greater in
the case of a body where the iron core and rocky mantle are differentiated. The gravitational
energy might also be supplemented through the release of orbital kinetic energy, which can
be significant in the case of energetic giant impacts [33, 45]. We next convert the radius to a
depth z = R− r from the planet’s surface, and using this, the hydrostatic pressure is found
as

P (z) =

∫ z

0

dz′g(z′)ρ(z′). (4.6)

This new set of the pressures are then fed back to the interpolated equation of state in order
to update the profiles of T and ρ. This same iterative process is then repeated until all the
profiles are converged to within a chosen tolerance.
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For the converged interior structure, the total gravitational binding energy of the model
planet is given by the integral

EG = −16

3
Gπ2

∫ R

0

drρ(r)r4. (4.7)

This can then be compared to an integral of the thermal energy consistent with the isentropic
barotrope

ET = 4πCV

∫ R

0

drρ(r′)T (r′)r′2, (4.8)

where CV is the isochoric specific heat capacity. For simplicity, we assume the CV is constant
with the high-temperature Dulong-Petite limit. We thus define an accretion efficiency

η ≡ ET
EG

. (4.9)

The Dulong-Petite limit is expected to be a reasonable approximation at high temperatures,
and thus for large values of M and S, but may overestimate by up to as material is added
for a smaller, cooler planet.

η=0.2

η=0.15

η=0.1

η=0.05

1 M
E

Figure 4.12: Comparison of the thermal state of a 1 Earth mass homogeneous planet with
gravitational binding energy converted with efficiency η = 0.05, 0.1, 0.15 and 0.2 (blue lines).
For η = 0.15 and 0.2, the isentrope crosses our calculated Fe-MgO solvus, and at least part
of the planet is predicted to be fully mixed. Isentropes are calculated by extrapolation of
FeMgO calculations at 100 and 400 GPa (blue circles).

From this point we can determine how high η must be in order for an accreting planet
with mass M to have a temperature profile that crosses the solvus. After the main period
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of planet growth η will naturally decrease over the lifetime of the planet. For a real planet,
the maximum η will depend on numerous factors at play during its formation, such as the
timescale of accretion and rate of heat-loss through a planet. If the outer silicate portions of
a planet are molten this heat loss can be quite rapid, although the formation of an insulating
silicate atmosphere may temper it [54].

Figure 4.12 shows the predicted temperature profiles for a 1 Earth-mass planet with η
= 0.05, 0.1, 0.15 and 0.2, compared to our computed Fe-MgO solvus. For a very high,
20% conversion efficiency of EG, most of the planet’s interior is heated to sufficiently high
temperatures to allow full miscibility of rock and iron. For 15% efficiency we would predict
this miscibility of the materials in the deep interior of the planet, with separation in the
outer portion of the planet. In the case of 5 or 10 % efficiency

η=0.1

η=0.05

6 M
E

Figure 4.13: Comparison of the thermal state of a 6 Earth mass homogeneous planet with
gravitational binding energy converted with efficiency η = 0.05, and 0.1 (blue lines). Isen-
tropes are calculated by extrapolation of FeMgO calculations at 100 and 400 GPa (blue
circles).

As the mass of the planet increases the minimum value of η needed to cross the solvus
decreases. For a 2 Earth-mass planet, a 10% EG conversion efficiency would permit a miscible
region in the deep interior. For a yet larger 6 Earth-mass planet, shown in Figure 4.13, a
miscible region is predicted for η as low as 0.05. In 6 Earth-mass case the adiabat through the
low pressure part of the planet is also below a typical mantle solidus, meaning that a single
planet might contain an outer rocky mantle, a deep magma ocean, followed by a deeper
silicate-iron mixed region. This is in contrast to the 1 Earth-mass case, where η = 0.15
would require most of the planet to be molten. For this reason, the mixed region on a 6
Earth-mass rocky planet may be long-lived, whereas such conditions could have only existed
for the earliest part of the Earth’s evolution. The minimum η for a planet of a given M to



CHAPTER 4. HIGH TEMPERATURE MISCIBILITY OF TERRESTRIAL MANTLES
AND CORES 53

intersect the solvus is shown in Fig. 4.14. The blue curve corresponds to the power law fit:
log10 η = −0.610× log10(M/ME)− 0.868.

The existence of a long-lived mixed iron-rock region would undoubtedly have conse-
quences for both the thermal evolution of these rock super-Earths, as well effecting the
generation of a magnetic field. There are confirmed examples of rocky bodies up to several
Earth-masses in the exoplanet population, for which these simple models would predict con-
ditions of miscibility between rock an iron in the interior. In reality the story may be more
complicated than this, because large rocky bodies are still expected to form from the collision
and merging of already-differentiated bodies, and the mechanical mixing of the denser iron
upwards through the planet may be inefficient, even at temperatures where it will readily
mix with the rocky mantle.

Figure 4.14: Minimum efficiency η for conversion of gravitational to thermal energy as a
function of planet mass for the homogeneous accreting planet to intersect the computed
Fe-MgO solvus at the center of the planet.



54

Chapter 5

Thermodynamics of Convection with
a Phase Transition

5.1 Motivation

One of the more surprising findings of the MESSENGER spacecraft to Mercury was the
confirmation that the smallest terrestrial planet has an internally generated, dipolar magnetic
field, which is likely driven by a combination of thermal and compositional buoyancy sources.
This observation places constraints on the thermal and energetic state of Mercury’s large
iron core and on mantle dynamics because dynamo operation is strongly dependent on the
amount of heat extracted from the core by the mantle. However, other observations point to
several factors that should inhibit a present-day dynamo. These include physical constraints
on a thin, possibly non-convecting mantle, as well as properties of liquid iron alloys that
promote compositional stratification in the core.

The lack of a simple relationship between the size of the planetary body and the presence
of a magnetic field in terrestrial planets of moons is striking. The thermodynamics of dynamo
generation exhibit a competition between heat loss by convection and heat loss by conduction.
Dipolar magnetic fields arise from helical flows that develop within a rotating conducting
liquid undergoing turbulent convection. The properties of iron alloys, and particularly their
melting temperature, is strongly influenced by the presence of light elements [158]. As a
result, the existence of a magnetic field depends on planet formation and evolution in a
complicated fashion. I propose to study the influence of non-ideal mixing behavior in liquid
alloys of iron and sulfur on thermal and compositional convection. Mercury’s magnetic field
strength has posed problems for standard dynamo models [39, 171], and partial crystallization
resulting from non-ideal mixing provides a possible mechanism to explain this.

Spacecraft observations have confirmed the presence of internally generated magnetic
fields for Mercury [5] and Ganymede [101]. The internal structure of both bodies is con-
strained by measurements of gravitational moments [165, 74]. However, these measurements
are not sufficiently precise to determine what portion of the cores are liquid, nor how much
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light component is contained in the cores. Thermal evolution calculations of both planets
[73, 74, 26, 17] suggest that several wt.% S is necessary to preserve a substantial unfrozen
layer in the core, despite inefficient stagnant-lid convection [166, 73, 26] and tidal heating
from a hypothesized resonance in Ganymede’s orbital history [164, 17]. Some models for
Mercury’s formation suggest minimal accretion of volatile elements like sulfur, but surface
observations from MESSENGER [147, 124] are inconsistent with extensive devolatilization.

The primary goals of this work is to develop an automated system to generate an inter-
polated thermodynamic model using experimentally determined, eutectic phase diagrams,
to calculate adiabatic profiles for the thermodynamic model using a parcel method, and to
evaluate the effect calculated adiabatic profiles have on global budgets of energy and entropy.
This work was never published and is presented here in an incomplete state.

A part of this work was integrated with and added upon as part of a Cooperative Institute
for Dynamic Earth Research (CIDER) summer program project. This includes work by the
present author in collaboration with Brent Delbridge, and Ian Rose, of UC Berkeley, and
Grace Cox of the University of Leeds, under the advisorship of Jessica Irving (Princeton),
Bill McDonough and Laurent Montesi (Maryland), and the last two sections of this chapter
present results from this collaboration.

5.2 Iron alloy properties

It has long been recognized that alloying components are abundant in the cores of terrestrial
planets and that they must play an important role in thermal evolution and dynamo gener-
ation. Indeed, it is now largely accepted that the exclusion of a light, alloying component is
the most important contributor to convection in the Earth’s core [115]. Therefore, consoli-
dating the present understanding about chemical state of Mercury’s interior is essential for
determining the state of Mercury’s dynamo.

For sufficiently high concentrations of S and Si, the alloy encounters a liquid-liquid im-
miscibility gap leading to the partitioning of these elements between different phases. Within
the pressure range and for reasonable compositions, an “iron snow” state [38, 199], where
iron crystallization initiates in the outer portions of the core, must also be considered for
Mercury. We, therefore, require a coupled model of chemistry and thermal evolution for
Mercury’s core to determine the constraints on composition of the core based on the planets
gravitational moments [165], and combine this with constraints from entropy budget calcu-
lations. Since these constraints are limited, it is necessary to develop a means of testing a
large number of possible interior structures and compositions.

The pressures present in the cores of Mercury (∼8−40 GPa) and Ganymede (∼8−12
GPa) are significantly lower than those for the Earth’s core and accessible to a wider variety
of experimental techniques. At these pressures, FeS has been discovered to undergo multiple
first-order phase transitions [55, 56], stabilizing new phases Fe3S2 and Fe3S at 14 and 21
GPa respectively. Fe-S melts undergo analogous changes in compacity [138] and associated
deviations from ideal mixing behavior [38]. The Fe-FeS system shows eutectic melting be-



CHAPTER 5. THERMODYNAMICS OF CONVECTION WITH A PHASE
TRANSITION 56

Figure 5.1: Liquidus relationships for Fe-S alloys generated from the interpolated thermody-
namic model for a range of light-element composition in wt.% S. The sharp peak and trough
lead to a region of partial crystallization for a range of thermal states of the core.

havior with eutectic sulfur composition decreasing from ∼30 wt.% S at ambient pressure
to ∼12 wt.% S at 40 GPa [41]. The eutectic temperature shows anomalous behavior over
a pressure range ∼5−20 GPa [55, 38]. Chen et al. [38] also found liquidus temperatures
at intermediate compositions on the Fe side of the eutectic to deviate from those predicted
by an ideal mixing model. These anomalous features in the Fe-S phase diagram lead to
the prediction of ‘iron snow’, partial crystallization near the top of the core with the lower
portion remaining completely molten [74, 38]. However, this process has yet to be analyzed
in a thermodynamically consistent manner.

5.3 Thermodynamic model from material data

I have created a working ‘pipeline’ in Matlab for generating a thermodynamic model from
experimental data [25, 55, 38, 180]. Data for X-T phase diagrams at constant pressure are fit
using a smoothing-spline. To best account for the changing shape and eutectic composition,
these spline fits are then interpolated with P as a linear combination of fits at the two nearest
values of P

X(P, T ) = Xeut(P )
∑
i=1,2

ξi(P )X̄i(T̄ ), (5.1)

where X̄, T̄ are fractional coordinates with respect to the values at the eutectic and pure Fe
endmembers, and ξi is linear mixing parameter. For parcel calculations, derivative relation-
ships between P , X and T can be related using the lever rule. Additional parameters such
as density, heat capacities and latent heat of fusion are included in a fashion allowing them
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to be specified as functions of P , X and T . With this pipeline, it should be straightforward
to repeat the analysis with other eutectic systems, such as silicate liquids, and test the affect
of varying parameters. The salient feature of the system is the variation of the liquidus with
light-element fraction, shown in Fig. 5.1, as this determines where crystallization occurs.

Figure 5.2: P − T profiles for an adiabatic parcel calculations with 6 wt.% S using the
interpolated Fe-S model. Starting temperatures are spaced by 50 K, and integrated from
low to high pressure. The solid black line represents the melting temperature for pure Fe,
and the dashed line the liquidus at 6 wt.% S.

5.4 Parcel calculations

Parcel calculations using the interpolated thermodynamic model are performed by numerical
integration of an expression derived from manipulation of the first law of thermodynamics

dT = −dP
[
−T

∑
i αiνixi + L

(
∂X
∂P

)
T

][∑
iCP,ixi + L

(
∂X
∂T

)
P

] , (5.2)

where αi, cP,i, νi, and L are the coefficient of thermal expansion, specific heat capacity,
specific volume, and specific latent heat, respectively, for a phase with mass fraction xi. Eqn.
5.2 enforces the constraint of zero heat transfer as the pressure on the parcel is changed.
Calculations are carried out by specifying a parcel composition, temperature and starting
pressure, and integrating over a range of pressures. An example calculation for 6 wt.% S, for
a range of starting temperatures is presented in Fig. 5.2. I find that for reasonable choices of
parameters, the calculated adiabat within the ‘iron snow’ region is maintained within ∼10
degrees of the liquidus over a range of∼50−100 degrees in starting temperatures. Meanwhile,
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the temperatures outside the adiabat show negligible perturbation from simple single-phase
adiabats.

Figure 5.3: Left: pressure, gravity, density, and temperature profiles of an interior model for
Mercury, with 6 wt.% S. Right: Liquidus curves for different pressures in the Fe-FeS system,
from compiled and interpolated experimental data (Wicks and Knezek, pers. comm.), credit:
Nick Knezek.

The onset of crystallization in the outer portion of a terrestrial core may affect convection
and dynamo generation in multiple ways. Hauck II et al. [74] suggested that settling of crys-
tals might contribute to convection by releasing gravitational energy. It is unclear, however,
that crystal settling can drive large scale convective motion. The crystal fractions for the
simulation represented in Fig. 5.2 also remains relatively small for conditions during which
a separate ‘iron snow’ region exists. One can consider the influence of this process through
use of a perturbed adiabat with standard models for convection and dynamo generation.

5.5 Core energy and entropy budgets

To determine the energy and entropy budgets, I make use of standard iterative methods for
determining a mean core state, constrained by a planet mass, core mass and a requirement
that P = 0 at the surface (e.g. Lister and Buffett [115]). From this, I obtain radial profiles
of material properties along a calculated adiabat. I use descriptions of the core energy
and entropy budget [67, 115, 114] to compare the evolution of mean core state with and
without consideration of partial crystallization. Evolution calculations are simplified by
assuming fractional crystallization in the core has a negligible affect on the thermal state of
the mantle, allowing the results of existing thermal evolution calculations [73, 26] to be used
as boundary conditions. Since the conductive heat flux is proportional to ∇T , the steepened
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adiabat causes a decrease in the convective heat flux. In the description of the entropy flux,
this manifests itself as a term proportional to k (∇T/T )2 arising from the divergence of the
conductive heat flow [114]. I can compare the magnitude of this contribution to standard
estimates for the contribution from thermal and compositional convection.

Figure 5.4: Left: Clapeyron slopes for different interpolations of the iron melting curve, com-
pared to adiabats with various parameterizations. Right: Models for latent heat and gravi-
tational energy release from a solidifying core, with corresponding thermal energy change.

The semi-analytic methods presented above allow for analysis of the affect of non-ideal
melting on the energetics over long time-scales. However, the details of the dynamics of
convection are also of importance to magnetic field generation. Numerical calculations of
convection would, therefore, be a useful supplement to the results presented here. They
would help evaluate the validity of key assumptions, such as the persistence of an adiabatic
state through the ‘iron snow’ region. This could be achieved through modification of the
CALYPSO, a geodynamo code which passes standard benchmarks [40]. This requires im-
plementation of phase tracking, and a contribution to the energy equation from latent heat
release.

5.6 Mercury interior structure model

As a culmination of a 2014 CIDER Summer Program, we have a working prototype for
a code designed to calculate self-consistent internal structures. The code uses an efficient
iterative procedure to calculate density, gravity, pressure and temperature profiles. It can
also find an inner core radius that is consistent with a given core temperature profile. In
order to do this we have made use of the code base provided by the BurnMan project [44],
a continuation of a prior CIDER collaboration. This framework allows for integration of
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thermodynamic properties of minerals in a straightforward and consistent manner. A major
benefit of designing the structural model code around BurnMan is the systematic inclusion
of uncertainty in the experimentally determined thermodynamic properties, which will be
an important step in establishing the ability of any given set of constraints to determine the
state of Mercury’s core.

We have developed a 3-layer interior structure model with a growing inner core. This
involves a more complicated version of the calculations presented in Section 4.3, involving
more specific descriptions of the in multiple layers with attention paid to the conditions at
the interfaces. Material properties are calculated using a Mie-Grüneisen-Debye EOS, using
the BurnMan code. It finds adiabatic temperature profiles consistent with the pressure of
the inner core boundary and the composition of the liquid. The interior planet model is
given a list of different layers of a given mass and homogeneous composition.

The BurnMan code is then called upon to calculate a P − T barotrope for a given
mantle mineralogy and composition. We adapted the burnman.Mineral class to describe an
equation of state for solid and liquid iron alloys. For the solids we used experimental data
for pure gamma iron and a 17 wt. % Si solid solution [184, 64, 113]. For the liquid we used
the results of experiments of pure iron [6, 50], as well as solutions with sulfur and silicon
[10, 95]. For the liquids the Grüneisen is not well defined, although we choose to use this
approximation in order to utilize existing BurnMan code for the core materials.

Included in the interior model is a simple treatment of the partitioning of light elements
between the solid inner and liquid outer cores. As the inner core grows, light elements become
concentrated in the outer core according to their initial abundance, partitioning coefficient,
and mass fraction in the solid and liquid reservoirs. In these models we assume that sulfur
partitions entirely into the liquid (distribution coefficient, D = 0), whereas silicon partitions
nearly equally between the solid and liquid.

Also shown in Fig. 5.3 is a model liquidus, fit to experimental phase diagrams. This
particular liquidus model was modified from one compiled by June Wicks and Nick Knezek
(pers. comm., CIDER 2014). This model is an interpolation, very similar to the one pre-
sented earlier in the chapter, but with additional experimental sources included in the model.
The melting curve of the Fe-S system has enigmatic features, which may not be adequately
captured by a linear interpolation. The onset of “snow” regions in the core is extremely
sensitive to this interpolation.

Comparing the slope of the interpolated melting temperature to the slope of the adiabatic
profile determines the crystallization behavior of the core, with a steeper melting temperature
corresponding to “Earth-like” conditions. For higher values of the thermal expansivity, α,
the core will be “snowing” at all times. For lower α, the onset of snowing occurs with
increasing S-content.

Once the layer masses and compositions are defined for the interior structure model. We
use an iterative method to compute consistent boundary radii for each of the layers, along
with consistent profiles of gravity and pressure as a function of radius from the center of the
planet. The pressures are then fed back to the description of the adiabatic barotropes to
update the pressures and densities as a function of radius of the planet. This description also
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Figure 5.5: Left: Thermal evolution of the Mercurian mantle and core. This thermal evolu-
tion model couples the core thermodynamics in the previous section with the parameterized
convection model of [178]. The colored regions show the solution for models with ±100
degrees C. Note the break in slope of the Tcmb temperature with the onset of inner core
growth at ∼ 2.5 × 102 Ma. Right: Growth of the inner core versus time. This model run
yields an inner core of ∼ 1400 km, slightly exceeding the upper bound of inner core size as
constrained by [53]. Figure credit: Ion Rose.

naturally leads to the moments of inertia for each of these layers, for which there are indirect
measurements from Mercury’s orbital librations [120]. It also allows for a calculation of the
radial contraction of the planet, which may be recorded in geological features such as scarps
on the planet’s surface.

5.7 Coupling with mantle convection

Between any two interior structure models with an incremental change in the solidification
of the core, there is a change in the energy of the system. The change in density profile, from
contraction and light element partitioning in the core can be translated into a change in the
gravitational energy of the system. Likewise, the change in temperature profile can be used
to approximate a change in thermal energy in combinations with a heat capacity, CP . The
solidification of the inner core also has an accompanying latent heat release, although this is
a smaller effect.

In order to relate these global changes in energy to a predicted timescale, one must con-
sider the rate of heat loss through the mantle and lithosphere of the planet. The interior
structure model is coupled to a parameterized convection model [178] for the thermal evolu-
tion of the planet. Shown on the right in Fig. 5.4 are the changes in latent heat, gravitational
and thermal energy in the core per change in core mantle boundary temperature for bulk
composition of 6 wt.% S. Over a large number of steps, we can thus track the energy and
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Figure 5.6: Heat flux variations due to insolation for a conducting mantle with negligible
internal heating. The total CMB heat flux is ∼ 0.6 TW, and peak-to-peak variations are
about 20%. Figure Credit: Ian Rose.

entropy fluxes through different portions of the planet.
Mercury’s unusual 3:2 spin-orbit resonance causes persistent temperature variations at

the surface. This boundary condition may create significant heat-flux variations at the CMB,
especially if the mantle is not convecting. Here we solve a simple conduction equation in the
Mercurian mantle to calculate an estimate of heat flux at the CMB. This heat-flux variation
can then used to inform the boundary conditions of a dynamo simulation using the Calypso

code, and entropy-budget models for geodynamos such as that introduced in Section 5.5.
Results from an example calculation of such a geodynamo entropy budget calculation are
shown in Figure 5.7.
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Figure 5.7: Entropy budget and inner core radius for a core with 6 wt.% S and current CMB
heat flux of 0.5 TW. In this model, there is insufficient entropy to drive a dynamo before
inner core solidification (negative Ohmic dissipation), but compositional sources that arise
from inner core growth increase the available entropy such that a present-day dynamo can
be sustained (positive Ohmic dissipation). Figure credit: Grace Cox.



64

Chapter 6

Calculating Gravitational Moments
for an Interior Structure

6.1 Motivation

The gas giants Jupiter and Saturn rotate so rapidly that adequate treatment of the non-
spherical part of their gravitational potential requires either a very high-order perturbative,
or better, an entirely non-perturbative approach [86, 87, 85, 205, 204]. Here we present an
extension of the Concentric Maclaurin Spheroid (CMS) method of Hubbard [86, 87] to three
dimensions to include the tidal perturbation from a satellite. This allows for high-precision
simulations of static tidal response, consistent with the planet’s shape and interior mass
distribution. The presence of a large rotational bulge produces an observable effect on the
tidal response of giant planets. This effect, which has not been previously revealed by linear
tidal-response theories applied to spherical-equivalent interior models, has implications for
the observed tidal responses of Jupiter and Saturn.

The Juno spacecraft is expected to measure the strength of Jupiter’s gravitational field to
an unprecedented precision (∼ one part in 109) [96], potentially revealing a weak signal from
the planet’s interior dynamics. Also present in Jupiter’s gravitational field will be tesseral-
harmonic terms produced by tides raised by the planet’s large satellites. In fact, close
to the planet, the gravitational signal from Jupiter’s tides has a similar magnitude to the
predicted signal from models of deep internal dynamics [34, 96, 98]. An accurate prediction
of the planet’s hydrostatic tidal response will, therefore, be essential for interpreting the
high-precision measurements provided by the Juno gravity science experiment.

Although the Cassini Saturn orbiter was not designed for direct measurement of high-
order components of Saturn’s gravitational field, it has already provided gravitational in-
formation relevant to the planet’s interior structure. Lainey et al. [110] used an astrometry
dataset of the orbits of Saturn’s co-orbital satellites to make the first determination of the
planet’s k2 love number. Their observed k2 was significantly larger than the theoretical pre-
diction of Gavrilov and Zharkov [62]. A mismatch between an observed k2 and the value
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predicted for a Saturn model fitted to the planet’s low-degree zonal harmonics J2 and J4

would raise questions about the adequacy of the hydrostatic (non-dynamic) theory of tides.
In this paper we present theoretical results for simplified Saturn interior models matching

the planet’s observed low-degree zonal harmonics. When these models are analyzed with the
full 3-d CMS theory including rotation and tides, we predict a gravitational response in line
with the observed k2 value of Lainey et al. [110], suggesting that the observation can be
completely understood in terms of a static tidal response. A similar test will be possible for
Jupiter once its k2 has been measured by the Juno spacecraft.

There is extensive literature on the problem of the shape and gravitational potential of
a liquid planet in hydrostatic equilibrium, responding to its own rotation and to an external
gravitational potential from a satellite; see, e.g., a century-old discussion in Jeans [94]. Many
classical geophysical investigations use a perturbation approach, obtaining the planet’s linear
and higher-order response to small deviations of the potential from spherical symmetry. A
good discussion of the application of perturbation theory to rotational response, the so-called
theory of figures, is found in Zharkov and Trubitsyn [211], while a pioneering calculation of
the tidal response of giant planets is presented by Gavrilov and Zharkov [62].

Hubbard [86] introduced an iterative numerical method, based on the theory of figures,
for calculating the self-consistent shape and gravitational field of a constant density, rotat-
ing fluid body to high precision. In the CMS method, integrals over the mass distribution
are solved using Gaussian quadrature to obtain the gravitational multipole moments. This
method was extended to non-constant density profiles by Hubbard [87], by approximating the
barotropic pressure-density relationship with multiple concentric constant-density (Maclau-
rin) spheroids. Here a spheroid is defined as a smooth shape obtained from deforming a
sphere in three dimensions and is more general than an ellipsoid, whose shape is uniquely
defined by 3 parameters. This approach mitigates problems with cancellation of terms that
arise in a purely numerical solution to the general equation of hydrostatic equilibrium, and
has a typical relative precision of ∼ 10−12. The CMS method has been benchmarked against
analytical results for simple models [85] and against an independent, non-perturbative nu-
merical method [205, 204].

The theory of Gavrilov and Zharkov [62] begins with an interior model of Saturn fitted
to the values of J2 and J4 observed at that time. This interior model tabulates the mass
density ρ as a function of s, where s is the mean radius of the constant-density surface.
Tidal perturbation theory is then applied to this spherical-equivalent Saturn. The Gavrilov
and Zharkov [62] approach is sufficient for an initial estimate of the tidally-induced terms
in the external potential, but it neglects terms which are of the order of the product of the
tidal perturbation and the rotational perturbation. Here we demonstrate that, for a rapidly-
rotating giant planet, the latter terms make a significant contribution to the love numbers
knm, as well as (unobservably small) tidal contributions to the gravitational moments Jn.

Vorontsov et al. [193] introduced a novel approach to calculation of the tidal response of
giant planets. Rather than treating the problem as a purely static one, as we do here, they
considered the case of a non-rotating giant planet orbited by a single satellite with an inertial
orbital frequency Ωs. They then calculated the response of the planet’s normal oscillation
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modes to the perturbation, noting that the mode frequencies (whose oscillation periods are
measured in hours) are much higher than satellite orbital frequencies (satellite periods are
measured in days). For such off-resonance excitation, it is unnecessary to consider damping
(as parameterized by the tidal quality factor Q) in calculating the tidal response. Taking the
limit Ωs → 0, Vorontsov et al. [193] obtained the static tidal response of the non-rotating
planet and thus its love number k2. We compare the Vorontsov et al. Saturn k2 with our
value in Section 7.2, below.

An analogous problem has been studied for the tidal response of Galilean satellite Io
by Zharkov [209] and Zharkov and Gudkova [210], and for close-in exoplanets by Correia
and Rodŕıguez [43]. These works consider the second order approximations through a higher
order perturbative theory. Our problem is different, however, in that the tidal and rotational
perturbations for Io are of comparable magnitude, while the large influence of rotation on
a much weaker tidal response found here for Saturn is unlike Io. Similarly, close-in, tidally
locked exoplanets have comparable tidal and rotational perturbations.

Folonier et al. [58] presented a method for approximating the love numbers of a non-
homogeneous body using Clairaut theory for the equilibrium ellipsoidal figures. This results
in an expression for the love number k2 for a body composed of concentric ellipsoids, param-
eterized by their flattening parameters. In the case of the constant density spheroid, there
is a well-known result that the equipotential surface is an ellipsoid. However, in bodies with
more complicated density distributions, the equipotential surfaces will have a more general
spheroidal shape. Because of the small magnitude of tidal perturbations, the method of
Folonier et al. [58] works in the limit of slow rotation despite this limitation. However, the
method does not account for the coupled effect of tides and rotation, and does not predict
love numbers of order higher than k2. Within these constraints, we show below that our ex-
tended CMS method yields results that are in excellent agreement with results from Folonier
et al. [58].

Although our theory is quite general and can be used to calculate a rotating planet’s
static tidal response to multiple satellites located at arbitrary latitudes, longitudes, and
radial distances, for application to Jupiter and Saturn it suffices to consider the effect of
a single perturbing satellite sitting on an orbital plane at zero inclination to the planet’s
equator. Since tidal distortions are always very small compared with rotational distortion,
and Jupiter’s Galilean satellites, as well many of Saturn’s larger satellites, are on orbits
with low inclination, the tidal response to multiple satellites can be obtained by a linear
superposition of the perturbation from each body. Extension of our theory to a system with
a large satellite on an inclined orbit, such as Neptune-Triton, would be straightforward, but
is not considered here.
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6.2 Concentric Maclaurin spheroid method

In the co-rotating frame of the planet in hydrostatic equilibrium, the pressure P , the mass
density ρ and the total effective potential U are related by

∇P = ρ∇U. (6.1)

The total effective potential can be separated into three components,

U = V +Q+W, (6.2)

where V is the gravitational potential arising from the mass distribution within the planet,
Q is the centrifugal potential corresponding to a rotation frequency ω, and W is the tidal
potential arising from a satellite with mass ms at planet-centered coordinates (R, µs, φs),
where R is the satellite’s orbital distance from the origin, µs = cos θ, where θ is the satellite’s
planet-centered colatitude and φs is the planet-centered longitude. In this investigation, we
treat only the static tides in the corotating frame of the planet, and thus we always place
the satellite at angular coordinates µs = 0 and φs = 0. The relative magnitudes of V , Q,
and W can be described in terms of two non-dimensional numbers:

qrot =
ω2a3

GM
(6.3)

for the rotational perturbation and

qtid = −3msa
3

MR3
(6.4)

for the tidal perturbation, where G is the universal gravitational constant, and M and a
are the mass and maximum equatorial radius of the planet. The planet-satellite system is
described by these two small parameters along with a third parameter, the ratio a/R.

Since CMS theory is nonperturbative, in principle our results are valid to all powers of
these small parameters and their products (until we reach the computer’s numerical precision
limit). For the giant-planet tidal problems that we consider here, terms of second and higher
order in qtid are always negligible, but terms linear in qtid and multiplied by various powers of
qrot and a/R contribute above the numerical noise level. It is, in fact, terms of order qtid · qrot

that contribute most importantly to the new results of this paper.
We introduce dimensionless planetary units of pressure Ppu, density ρpu, and total po-

tential Upu, such that

P ≡GM
2

a4
Ppu

ρ ≡M
a3
ρpu

U ≡GM
a
Upu.

(6.5)
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Figure 6.1: Conceptual diagram of a Concentric Maclaurin Spheroid (CMS) model with a
tidal perturbation from a satellite.

The CMS method considers a model planet composed of N nested spheroids of constant
density as depicted in Figure 6.1. We label these spheroids with index i = 0, 1, 2, . . . , N − 1,
with i = 0 corresponding to the outermost spheroid and i = N − 1 corresponding to the
innermost spheroid. Each spheroid is constrained to have a point at radial distance ai
from the planet’s center of mass, such that each of these fixed points has the same angular
coordinates as the sub-satellite point (µ = 0, φ = 0). Accordingly, the a0 of the outermost
spheroid corresponds to its the largest principal axis, if the perturbing satellite is in the
equatorial plane.

When qtid = 0, the potential is axially symmetric and the problem can be solved in two
spatial dimensions. However, when both qtid and qrot are nonzero, the symmetry is broken,
meaning that each spheroid has a fully triaxial figure with the surface described by

ζi ≡ ri(µ, φ)/ai, (6.6)

such that ζ0 represents the shape of the outer surface.
Taking advantage of the principle of superposition for a linear relationship between the

potential V and the mass density ρ, the total V is given by the sum of the potential aris-
ing from each individual spheroid [87]. This allows us to approximate any monotonically
increasing density profile, with the density of the ith spheroid represented by the density
jump

δρi =

{
ρi − ρi−1, i > 0

ρ0, i = 0.
(6.7)
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This parameterization of density has the added benefit of naturally handling discontinuities
in ρ, as would be expected for a giant planet with a dense central core.

6.3 Extension to three dimensions

Calculation of gravitational potential

The gravitational potential at a point vector coordinate, do to an arbitrary mass distribution
is given by

V (r) = G

∫
d3r′

ρ(r′)

|r− r′|
. (6.8)

An expansion of V in spherical coordinates r = (r, µ = cos θ, φ) is

V (r, µ, φ) =

G

r

[
∞∑
n=0

Pn(µ)

∫
τ

dτρ(r′)Pn(µ′)

(
r′

r

)k
+
∞∑
n=0

n∑
m=1

Pm
n (µ) cos(mφ)

∫
τ

dτ
2(n−m)!

(n+m)!
ρ(r′)Pm

n (µ′) cos(mφ′)

(
r′

r

)k
+
∞∑
n=0

n∑
m=1

Pm
n (µ) sin(mφ)

∫
τ

dτ
2(n−m)!

(n+m)!
ρ(r′)Pm

n (µ′) sin(mφ′)

(
r′

r

)k]
(6.9)

[211], where Pn and Pm
n are the Legendre and associated Legendre polynomials,

dτ = r′2dr′ sin(θ′)dθ′dφ′ = r′2dr′dµ′dφ′,

and the origin, r = (0, 0, 0), is the center of mass of the planet. The potential at a general
point within the planet has a contribution from mass both interior and exterior to that point,
for which the exponent k in Eqn. (6.9) is different:

k =

{
n, r′ < r

−(n+ 1), r′ > r.

The centrifugal potential Q depends only on r and µ

Q(r, µ) =
1

3
r2ω2 [1− P2(µ)] . (6.10)

The tidal potential W for a satellite at position R = (R, µs, φs) is

W (r) =
Gms

|R− r|
. (6.11)
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The general expansion of W around the center of mass of the planet is obtained by using
the summation theorem for spherical harmonics [62]

W (r, µ, φ) =
Gms

R

∞∑
n=2

( r
R

)n [
Pn(µ)Pn(µs)

+2
n∑

m=1

(n−m)!

(n+m)!
cos(mφ−mφs)Pm

n (µ)Pm
n (µs)

]
.

(6.12)

Following Hubbard [87], we derive non-dimensional quantities in terms of the planet mass
M and maximum radius a = a0. For each spheroid, we define a dimensionless radius of each
spheroid

λi ≡ai/a (6.13)

and dimensionless density increment, based on the mean density of the planet

ρ̄ =
3M

a3

1∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

0

δi ≡
δρi
ρ̄
.

(6.14)

A non-dimensional mass of the planet is then given by the integral expression

M∗ =
1

3

N−1∑
j=0

δjλ
3
j

∫ 1

−1

dµ′
∫ 2π

0

dφ′ζ3
j , (6.15)

which is equal to unity when δj is properly normalized for ζj. The contribution to the
potential is expanded in terms of interior and external zonal harmonics Ji,n and J ′i,n. For
the tidal problem, we must also consider the analogous Ci,nm, C ′i,nm, Si,nm and S ′i,nm [211].
These contribute linearly to the total moment evaluated exterior to the planet’s surface

Jn =
∑

i=0,N−1

Ji,n. (6.16)

The layer-specific harmonics are then normalized by radius as

J̃i,n ≡
Ji,n
λni

, J̃ ′i,n ≡J ′i,nλ
(n+1)
i

S̃i,nm ≡
Si,nm
λni

, S̃ ′i,nm ≡S ′i,nmλ
(n+1)
i

C̃i,nm ≡
Ci,nm
λni

, C̃ ′i,nm ≡C ′i,nmλ
(n+1)
i .

(6.17)
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Following the derivation in Hubbard [87] and generalizing the expressions for full three
dimensional volume integrals, we find the normalized interior harmonics

J̃i,n = − 3

n+ 3

δiλ
3
i

∫ 1

−1
dµ′Pn(µ′)

∫ 2π

0
dφ′ζ

(n+3)
i∑N−1

j=0 δjλ3
j

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

j

C̃nm =
6(n−m)!

(n+ 3)(n+m)!

δiλ
3
i

∫ 1

−1
dµ′Pm

n (µ′)
∫ 2π

0
dφ′ζ

(n+3)
i cos(mφ′)∑N−1

j=0 δjλ3
j

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

j

S̃nm =
6(n−m)!

(n+ 3)(n+m)!

δiλ
3
i

∫ 1

−1
dµ′Pm

n (µ′)
∫ 2π

0
dφ′ζ

(n+3)
i sin(mφ′)∑N−1

j=0 δjλ3
j

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

j

,

(6.18)

and the exterior harmonics

J̃ ′i,n = − 3

2− n
δiλ

3
i

∫ 1

−1
dµ′Pn(µ′)

∫ 2π

0
dφ′ζ

(−n+2)
i∑N−1

j=0 δjλ3
j

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

j

C̃ ′nm =
6(n−m)!

(2− n)(n+m)!

δiλ
3
i

∫ 1

−1
dµ′Pm

n (µ′)
∫ 2π

0
dφ′ζ

(−n+2)
i cos(mφ′)∑N−1

j=0 δjλ3
j

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

j

S̃ ′nm =
6(n−m)!

(2− n)(n+m)!

δiλ
3
i

∫ 1

−1
dµ′Pm

n (µ′)
∫ 2π

0
dφ′ζ

(−n+2)
i sin(mφ′)∑N−1

j=0 δjλ3
j

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

j

(6.19)

with a special case for n = 2

J̃ ′i,n = −3
δiλ

3
i

∫ 1

−1
dµ′Pn(µ′)

∫ 2π

0
dφ′ log(ζi)∑N−1

j=0 δjλ3
j

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

j

C̃ ′nm =
6(n−m)!

(n+m)!

δiλ
3
i

∫ 1

−1
dµ′Pm

n (µ′)
∫ 2π

0
dφ′ log(ζi) cos(mφ′)∑N−1

j=0 δjλ3
j

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

j

S̃ ′nm =
6(n−m)!

(n+m)!

δiλ
3
i

∫ 1

−1
dµ′Pm

n (µ′)
∫ 2π

0
dφ′ log(ζi) sin(mφ′)∑N−1

j=0 δjλ3
j

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

j

(6.20)

and

J ′′i,0 =
2πδia

3
0

3M
. (6.21)

The shape of the surface of the planet is defined by the equipotential relationship

U(ζ, µ, φ, µs, φs)− U(1, 0, 0, µs, φs) = 0, (6.22)
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where the potential in planetary units at an arbitrary point on the planet’s surface

U(ζ, µ, φ, µs, φs) =
1

ζ0

[
1−

N−1∑
i=0

∞∑
n=1

λni ζ
−n
0

{
Pn(µ)J̃i,n

−
n∑

m=1

Pm
n (µ)

(
C̃i,nm cos(mφ) + S̃i,nm sin(mφ)

)}
+

1

3
qrotζ

3
0 [1− P2(µ)]

− 1

3
ζ3

0qtid

∞∑
n=2

( a
R

)(n−2)

ζ
(n−2)
0

{
Pn(µ)Pn(µs)

+2
n∑

m=1

(n−m)!

(n+m)!
cos(mφ−mφs)Pm

n (µ)Pm
n (µs)

}]
(6.23)

matches the reference potential at the sub-satellite point

U(1, 0, 0, µs, φs) =1−
N−1∑
i=0

∞∑
n=1

λni

{
Pn(0)J̃i,n −

n∑
m=1

Pm
n (0)C̃i,nm

}

+
1

2
qrot −

1

3
qtid

∞∑
n=2

( a
R

)(n−2)
{
Pn(0)Pn(µs)

+2
n∑

m=1

(n−m)!

(n+m)!
cos(−mφs)Pm

n (0)Pm
n (µs)

}
.

(6.24)

Similarly, the shapes of the interior spheroids are found by solving

Uj(ζ, µ, φ, µs, φs)− Uj(1, 0, 0, µs, φs) = 0, (6.25)



CHAPTER 6. CALCULATING GRAVITATIONAL MOMENTS FOR AN INTERIOR
STRUCTURE 73

where

Uj(ζj, µ, φ, µs, φs) =− 1

ζjλj

[
N−1∑
i=j

∞∑
n=0

(
λi
λj

)n
ζ−nj

{
Pn(µ)J̃i,n

−
n∑

m=1

Pm
n (µ)

(
C̃i,nm cos(mφ) + S̃i,nm sin(mφ)

)}

+

j−1∑
i=0

∞∑
n=0

(
λj
λi

)n+1

ζn+1
j

{
J̃ ′i,nPn(µ)

−
n∑

m=1

Pm
n (µ)

(
C̃ ′i,nm cos(mφ) + S̃ ′i,nm sin(mφ)

)}

+

j−1∑
i=0

J ′′i,0λ
3
jζ

3
j

]
+

1

3
qrotλ

2
jζ

2
j [1− P2(µ)]

− 1

3
λ2
jζ

2
j qtid

∞∑
n=2

(
aλj
R

)(n−2)

ζ
(n−2)
j

{
Pn(µ)Pn(µs)

+2
n∑

m=1

(n−m)!

(n+m)!
cos(mφ−mφs)Pm

n (µ)Pm
n (µs)

}

(6.26)

and

Uj(1, 0, 0, µs, φs) =− 1

λj

[
N−1∑
i=j

∞∑
n=0

(
λi
λj

)n{
Pn(0)J̃i,n −

n∑
m=1

Pm
n (0)C̃i,nm

}

+

j−1∑
i=0

∞∑
n=0

(
λj
λi

)n+1
{
J̃ ′i,nPn(0)−

n∑
m=1

Pm
n (0)C̃ ′i,nm

}

+

j−1∑
i=0

J ′′i,0λ
3
j

]
+

1

2
qrotλ

2
j

− 1

3
λ2
jqtid

∞∑
n=2

(
aλj
R

)(n−2)
{
Pn(0)Pn(µs)

+2
n∑

m=1

(n−m)!

(n+m)!
cos(−mφs)Pm

n (0)Pm
n (µs)

}
.

(6.27)

From Eqn. (6.27), we also find the potential at the center of the planet

Ucenter = −
N−1∑
i=0

∞∑
n=0

λi

{
J̃ ′i,n −

n∑
m=1

C̃ ′i,nm

}
. (6.28)
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Taking the limit of Eqn. (6.28) as the radius goes to zero yields

Ucenter = lim
ζj→0

Uj(ζj)

= −
N−1∑
i=0

J ′i,n=0

λi
,

(6.29)

correcting a typographical error in Eqn. 49 of Hubbard [87]. In solving equations (6.22) and
(6.25), we also require their analytical derivatives

d [U(ζ, µ, φ, µs, φs)− U(1, 0, 0, µs, φs)]

dζ
=
dU(ζ, µ, φ)

dζ

d [Uj(ζj, µ, φ, µs, φs)− Uj(1, 0, 0, µs, φs)]
dζj

=
dUj(ζj, µ, φ)

dζj
.

(6.30)

Gaussian quadrature

The preceding expressions give the gravitational potential and equipotential shapes, as a
function of qrot and qtid, within a layered planet with N concentric spheroids. In the limit
of N → ∞, the solution would apply to an arbitrary monotonically increasing barotropic
relation, ρ(P ).

For practical applications, we need to find the potential as a multipole expansion up to
a maximum degree nmax. For the results presented here, we use nmax = 30. The angular
integrals in equations (6.18) – (6.20) can be evaluated using Gaussian quadratures on a two
dimensional grid. Here we use Legendre-Gauss integration to integrate polar angles over
L1 = 48 quadrature points µα = cos(θα), α = 1, 2, . . . L1, with the corresponding weights
ωα over the interval 0 < µ < 1. At any point in the calculation, we must keep track of
radius values for each layer on a 2D grid of quadrature points ζiαβ. For efficiency, we pre-
calculate the values of all of the Legendre and associated Legendre polynomials at each polar
quadrature point, Pn(µα) and Pm

n (µα).
For the azimuthal angle, we encounter integrals of the form

Ic,m ≡
∫ 2π

0

f(φ) cos(mφ)dφ

Is,m ≡
∫ 2π

0

f(φ) sin(mφ)dφ

(6.31)

when calculating the tesseral harmonics. For these, we use Chebyshev-Gauss integration
with L2 = 96 quadrature points ηβ = cos(φβ), β = 1, 2, . . . L2, with the corresponding
weights ωβ, β = 1, 2, . . . L2 over the interval 0 < φ < 2π

dη = − sin(φ)dφ

dφ = − dη√
1− η2

.
(6.32)
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Using the identity (sin θ)m−k = (1− µ2)
m−k

2 , the sinusoidal functions can be expanded as

cosmφ =
m∑
k=0

(
m

k

)
ηk(1− η2)

m−k
2 cos

{π
2

(m− k)
}

sinmφ =
m∑
k=0

(
m

k

)
ηk(1− η2)

m−k
2 sin

{π
2

(m− k)
}
.

(6.33)

Substituting these into Eqn. (6.31) and splitting the integral into two intervals 0 < φ < π
and π < φ < 2π yields

Ic,m =
m∑
k=0

(
m

k

)
cos
[π

2
(m− k)

]{∫ 1

−1

ηkf(cos−1(−η))
[
1− η2

]m−k
2 dη

−
∫ 1

−1

ηkf(cos−1 η)
[
1− η2

]m−k
2 dη

}
=

m∑
k=0

(
m

k

)
cos
[π

2
(m− k)

]
∗

{
±

L2∑
β=1

ωβη
k
βf(π − cos−1(ηβ))

[
1− η2

β

]m−k
2

−
L2∑
β=1

ωβη
k
βf(cos−1 ηβ)

[
1− η2

β

]m−k
2

}
,

(6.34)

where the sign of the second sum depends on the parity of m. When calculating the zonal
harmonics, the integral Ic,m(f(µα, φβ)) reduces to the axisymmetric solution with m = 0.
The zonal harmonics Eqn. (6.18) can, therefore, be calculated via the summation

J̃i,n ≈ −
(

3

n+ 3

)(
δiλ

3
i

∑L1

α=1 ωαPn(µα)Ic,0(ζ
(n+3)
iαβ )∑N−1

j=0 δjλ3
j

∑L1

α=1 ωαIc,0(ζ3
jαβ)

)
(6.35)

and the tesseral harmonics likewise via

C̃nm ≈
6(n−m)!

(n+ 3)(n+m)!

(
δiλ

3
i

∑L1

α=1 ωαP
m
n (µα)Ic,m(ζ

(n+3)
iαβ )∑N−1

j=0 δjλ3
j

∑L1

α=1 ωαIc,0(ζ3
jαβ)

)
. (6.36)

There are analogous expressions for Is,m and Snm, but these evaluate to zero in all calculations
presented here due to the symmetry of the model.

Iterative procedure

We begin with initial estimates for the shape of each surface ζiαβ,0 and for the moments

J̃i,n, J̃ ′i,n, J̃ ′′i , C̃i,nm, C̃ ′i,nm, S̃i,nm, and S̃ ′i,nm. For each iteration t the level surfaces are then



CHAPTER 6. CALCULATING GRAVITATIONAL MOMENTS FOR AN INTERIOR
STRUCTURE 76

updated using a single Newton-Raphson integration step.

ζiαβ,t+1 = ζiαβ,t −
f(ζiαβ,t)

f ′(ζiαβ,t)
(6.37)

where f is the equipotential relation, Equations (6.22) – (6.24) for the outermost surface
and Equations (6.25) – (6.27) for interior layers, and f ′ is the first derivative of that function
with respect to ζ, Eqn. (6.30). The multipole moments are then calculated for the updated
ζiαβ via Equations (6.18) – (6.20). These two steps are repeated until all of the exterior
moments, Jn, Cnm and Snm, have converged such that the difference between successive
iterations falls below a specified tolerance. Starting with a naive guess for the initial state, a
typical calculation achieves a precision much higher than would be required for comparison
with Juno measurements after about 40 iterations.

In simulations with a finite qrot and qtid, we typically find an initial converged equilibrium
shape with a non-zero, first-order harmonic coefficient C11 of the order of qrot ·qtid or smaller.
This indicates that the center of mass of the system is shifted slightly along the planet-
satellite axis from the origin of the initial coordinate system. To remove this term, we
apply a translation to the shape function of ∆x = −a · C11 in the direction of the satellite.
This correction requires approximating the coordinates (µ′, φ′) in the uncorrected frame that
correspond to the quadrature points µα and φβ in the corrected frame, so that the correct
shape ζ is integrated to find the moments in the corrected frame. For a value of qtid similar to
the gas giants, this correction yields a body with C11 on the order of the specified tolerance.
For systems with a much larger qtid (of which there are none in our planetary system), this
second-order effect might affect the precision of the calculation. The residual effect is below
the numerical noise level for the Saturn models presented in this paper.

Calculation of the barotrope

We first calculate the density of each uniform layer; for the jth layer we have

ρj,pu =

∑j
i=0 δi∑N−1

k=0 δkλ
3
k

∫ 1

−1
dµ′
∫ 2π

0
dφ′ζ3

k

. (6.38)

Using this expression, we calculate the total potential Upu on the surface of each layer and at
the center using Equations (6.24) and (6.27) – (6.28). Since the density is constant between
interfaces, the hydrostatic equilibrium relation, Eqn. (6.1) is trivially integrated to obtain
the pressure at the bottom of the jth layer.

Pj,pu = Pj−1,pu + ρj−1,pu(Uj,pu − Uj−1,pu) (6.39)

After obtaining a converged hydrostatic-equilibrium model for N spheroids with the above
array using the initial density profile δj, one calculates the arrays Uj,pu and Pj,pu. Next, one
calculates an array of desired densities

ρj,pu,desired = ρ

(
1

2
(Pj+1 + Pj)

)
, (6.40)
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where ρ(P ) is the inverse of the adopted barotrope P (ρ). Finding the difference between
the desired densities of subsequent layers then gives a new array of δj for use in the next
iteration. In our implementation, it is also necessary to scale these densities by a constant
factor to obtain the correct total mass of the CMS model.

Self-gravity from the model’s rotational and tidal deformation will cause a small change
in the density profile from that expected for a spherical body. In practice, only relatively
large changes in the shape of the body will cause a significant deviation in the density profile.
Since qrot � qtid, the influence of rotation dominates the shape of the body. For this reason,
we can use an axisymmetric, rotation-only model as described in Hubbard [87] to find a
converged density structure for a given barotrope and specified qrot, and then perform a
single further iteration with tides added to find the hydrostatic solution for that density
profile. Because the tide-induced density changes are very small, it is unnecessary to iterate
with Eqn. (6.40) to relax the configuration further for the triaxial figure. Converging the
density-pressure profile to a prescribed barotrope and a fully triaxial figure with relatively
large qtid is significantly more computationally expensive, and is irrelevant to any giant planet
in our planetary system.

Implementation and code

I have implemented this description of the 3D CMS model in a FORTRAN 90 code, tested
on both GNU and Intel FORTRAN compilers. The code is designed with two main modes:
one considering the full three dimensional problem with a single tidal perturbation, and the
other the axisymmetric setup with no tidal perturbation. The 3D mode is necessary in order
to perform calculations of the tidal response of the body, but for studies of a planet’s interior
structure the axisymmetric calculations are usually sufficient. For a ∼500 layer model, the
axisymmetric mode is over two orders of magnitude faster due to the fact that the 2D
Gauss-Legendre-Chebyshev integration grids are reduced to a 1D Gauss-Legendre grid. The
most computationally expensive component of a CMS simulation is the calculation of the
equipotential surface at each grid point. On a computer cluster the OpenMP implementation
divides the work of the component over an arbitrary number of processors on a given node.
In the case of the giant planets, where qrot >> qtid it is beneficial to pre-converge a shape
for the model planet with an axisymmetric calculation, and using this as the starting point
for the first iteration of the tidal calculation. This is an important feature which is included
in the code.

The design of the code itself is meant to be agnostic to the formulation for the equation
of state that the user wishes to use. It does this by reading in a tabulated equation of state
from a text file, containing columns with log10 P and log10 ρ generated by an independent
description for an equation of state. In my cases I generate more complex adiabats using a
Python script to handle the details and to wrap the FORTRAN implementations of the MH13
and SCvH equations of state for hydrogen and Helium. The CMS code, does however contain
native implementations of a few simple analytic equations of state for testing, included
constant, linear and polytrope relationships for ρ(P ).
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One of the constants that the code must maintain through the calculation is the total
mass of the planet. The simplest way to handle this is to uniformly scale the density of all
layers by a constant factor β determined from the miss-match of the current model mass
to the desired planet mass. This issue with this, is it means changing the densities from
those corresponding to the specified barotrope. This β factor can be related to a change
in composition (Y or Z), although this is typically non-unique. The mass can also be
maintained by specifying a particular region of the model planet over which to scale the
densities. This is useful in our modeling studies as it allows us to specify the parameters in
the outer envelope, for which we have constraining measurements, while fitting the density
structure (or more precisely the Z of the deep interior which is not constrained. In my CMS
implementation I provide two options for this. Either I set the density of a constant density
core as the single innermost layer, or I adjust a β factor for for a region within a given radius
and convert this to a Z for a dilute core. Similarly, the value of Z in the deep envelope (but
outside of the core) can be used to fit J2.

Another detail that effects the convergence of the CMS method is the distribution of layer
thickness. As we will demonstrate in later chapters, the contribution of the outer layers in
the planet have a higher weight in the calculation of both Jn and Cnm. For this reason, the
moments converge more rapidly with with N when the layer thicknesses are smaller in the
outer part of the planet. We don’t, in principle, have a means of finding optimal spacing.
A formula that we have identified that converges well is: take a small integer number of
regions with the same number of layers and with the total (e.g 100 in r = 0 − 0.5, 100 in
r = 0.5− 0.75, 100 in r = 0.75− 0.875, 200 in r = 0.875− 1). A related issue is the handling
the outer boundary condition, where the density rapidly changes as a function of radius. A
simple way of handling the boundary is to make the outermost layer half the width of the
other layers. For the polytrope this leads to a much better match between the discretized
and continuous density profiles. For realistic equations of state we enforce the 1 bar density
on a very thin layer (consistent to ∼1 km), with layer thicknesses increasing geometrically
until it reaches the thickness consistent with the scheme for the rest of the distribution of
thicknesses. This is usually on the order of 10 layers.

6.4 Comparison with test cases

Spheroid of constant density

The well-known special case of a single constant-density spheroid is an important test, be-
cause it has a closed form, analytical solution to the theory of figures [182]. In the case of
non-zero qrot it is conventionally referred to as the Maclaurin spheroid, as the Jeans spheroid
for finite qtid, and the Roche spheroid in the general case. In equilibrium, the spheroid
will have an ellipsoidal shape. In the limit of a low-amplitude tidal perturbation and zero
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rotation, the love number for all permitted n is

kn =
3

2(n− 1)
(6.41)

[141].
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Figure 6.2: The effect of tidal perturbation strength on the tidal love numbers of a non-
rotating constant density (Jeans) spheroid up to order 6. The love numbers kn are degenerate
with respect to m. The orbital radius is taken to be that of Tethys.

From our simulation results, we calculate the love numbers as

knm = −2

3

(n+m)!

(n−m)!

Cnm
Pm
n (0)qtid

( a
R

)2−n
. (6.42)

For simulations with finite qtid and qrot = 0, we find our calculated knm to be degenerate
with m in accordance with the analytical result. For a given value of n,

knm =

{
0, n and m opposite parity

const, n and m same parity.
(6.43)

Figure 6.2 shows the calculated kn for the non-rotating Jeans spheroid as a function of qtid

up to order n = 6, with R/a taken to be that for Tethys and Saturn. For a small tidal
perturbation, we find that kn approaches the analytical result of Eqn. (6.41). Conversely,
as qrot approaches unity from below, the love numbers diverge, with kn decreasing for n ≤ 3
and increasing for n > 3. The departure from the analytical solution becomes significant
(|∆kn| > 0.1) for −qtid > 10−3, whereas for values representative of the largest Saturnian
satellites, k2 matches the analytic value to within our numerical precision.
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Figure 6.3: The effect of rotation rate on the tidal love numbers of a constant density
(Roche) spheroid up to order 6. The knm for a given n are found to split at high rotation
rates. qtid is kept constant at 1.0×10−6, and the orbital radius is taken to be that of Tethys.

In general, the tidal response of a gas giant planet will not be a perturbation to a perfect
sphere, but to a spheroidal shape dominated by rotational flattening. Therefore, simulation
of the tidal response in the absence of rotation is not generally applicable to real gas giants.
When we simulate a Roche spheroid with both finite qrot and qtid, we find a different behavior
for knm as defined by Eqn. (6.42). Figure 6.3 shows the calculated knm for a spheroid with a
constant qtid and a variable qrot. When the magnitude of qrot is comparable to qtid, the tidal
response matches the expected analytical result. However, for qrot > 10−3, we can see that
the degeneracy of knm with m is broken, and all permitted knm deviate from the expected
values. In other words, Eqn. (6.43) becomes{

knm = 0, n and m opposite parity

knm 6= const, n and m same parity,
(6.44)

and all permitted knm deviate from the expected values. We also note that these deviations
become pronounced earlier for the higher order n.

Two-layered spheroid

Proceeding to more complicated interior structures has proved challenging for analytical or
semi-analytical methods. Even the next simplest model with two constant-density layers
does not have a closed form solution for arbitrary order n. Folonier et al. [58] present an
extension of Clairaut theory for a multi-layer planet under the approximation that the level
surfaces are perfect ellipsoids. Under this approximation, they derive an analytic solution
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for the distortion in response to a tidal perturbation only. This yields an expression for
k2 as a function of two ratios of properties of the two layers, a1/a and ρ0/ρ1. Table 6.1
shows a comparison of our calculated k2 with the analytic result from Folonier et al. [58]
for a selection of parameters spanning a range of a1/a and ρ0/ρ1. All of our results using
the CMS method differ from those using Clairaut theory by less than 10−5. This provides
an important test of the correctness of the interior potentials used in our approach. It also
indicates that ellipsoids, while not exact, are a very good approximation for the degree 2
tidal response shape in the limit of very small qtid, and qrot = 0.

Table 6.1: Comparing two-layer models. Calculated k2 for a two layer model with qtid = 10−6,
qrot = 0 and Tethy’s R/a, for chosen values of ratio of radii and densities of the two layers.
Results closely match the approximation using Clairaut theory in Folonier et al. [58], Eqn.
41.

a1/a ρ0/ρ1 k2 CMS k2 Clairaut
0.1 0.5 1.496283 1.496286
0.3 0.5 1.411183 1.411185
0.5 0.1 0.465714 0.465716
0.5 0.3 0.947967 0.947969
0.5 0.5 1.205309 1.205311
0.5 0.7 1.360183 1.360186
0.5 0.9 1.461667 1.461669
0.7 0.5 1.057405 1.057407
0.9 0.5 1.217192 1.217194

Polytrope of index unity

The polytrope of index unity defines a more realistic barotrope that also lends itself to
semi-analytic analyses. It corresponds to the relation

P = Kρ2 (6.45)

where the polytropic constant K can be chosen to match the planet’s physical parameters.
For a non-rotating n = 1 polytrope, the density distribution is given by

ρ = ρc
sinπλ

πλ
(6.46)

where ρc is the density at the center of the planet. To obtain the first approximation of δj,
we differentiate Eqn. (6.46) by λ:

d(ρ/ρc)

dλ
=

cos πλ

λ
− sin πλ

πλ2
. (6.47)
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We then correct this profile to be consistent with the given qrot via the method introduced
in Section 6.3. Scaling the densities to maintain the total mass of the planet has a straight-
forward interpretation for a polytropic barotrope, as it is equivalent to changing K.
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Figure 6.4: The effect of tidal perturbation strength on the tidal love numbers of a non-
rotating planet with an n = 1 polytrope equation of state, up to order 6. ∆kn is the shift in
love number kn from the limit of low qtid. The love numbers kn are degenerate with respect
to m. The orbital radius is taken to be that of Tethys. The vertical, dashed gray lines show
qtid for Tethys-Saturn and Io-Jupiter.

For the constant-density Roche spheroid the lowest degree love number was

k2 =
3

2
. (6.48)

Considering only the linear response to a purely rotational perturbation, we define a general
degree 2 linear response parameter Λ2 as

J2 = Λ2qrot. (6.49)

Whereas Λ2 = 1/2 for the Roche spheroid, for the polytrope of index unity the analytic
result is [88]

Λ2 =

(
5

π2
− 1

3

)
. (6.50)

Considering linear response only, one finds in general

k2 = 3Λ2, (6.51)
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valid in the limit qrot � 1 and qtid � 1, for any barotrope in hydrostatic equilibrium. Thus,
for the polytrope of index unity in this limit,

k2 =
15

π2
− 1 = 0.519817755. (6.52)

We compare this to a CMS simulation of the n = 1 polytrope model with 128 layers, qrot = 0,
qtid = 10−6, and Tethys’ R/a. The simulation results agree with the expected relation
J2 = 2C22 to numerical precision, and yield k2 = 0.519775. This provides a test of the multi-
layer CMS approach subject to a tidal-only perturbation. The CMS result matches our Eqn.
(6.52) benchmark to better than the precision with which we could measure this parameter
using the Juno spacecraft. The small difference can be attributed to approximation of a
continuous polytrope by 128 layers in the CMS simulation. Wisdom and Hubbard [204]
(Eqn. 15) show the relative discretization error of a CMS polytrope model to be ∼ 10−3 for
N = 128, roughly consistent with our calculated difference.

Similar to the calculations on the constant density spheroid in Section 6.4, we performed
additional N = 128 polytrope simulations with finite qtid and qrot = 0. Once again, we find
our calculated knm to be degenerate with m for the tidal-only simulations, in agreement with
Eqn. (6.43). Figure 6.4 shows the behavior of kn for n ≤ 6 for these tidal-only polytrope
simulations. We only present these results up to qtid ∼ 10−4, because above that value effects
of the triaxial shape on the pressure-density profile would require iterated relaxation to the
polytropic relation, as discussed in Section 6.3. We observe that realistic values for qtid have
negligible effect on the tidal response. Even for the Io-Jupiter system, the effect of finite
qtid on knm is near the numerical noise level. The general behavior is quite similar to the
case of the single Jeans spheroid. For small tidal perturbations, the polytrope kn approach
values smaller than the single spheroid case, with k2 asymptoting to the analytic limit in
Eqn. (6.52). Similar to the single spheroid, the behavior as qrot increases from zero sees
kn decrease for n ≤ 3 and increase for n > 3. The deviation from the low qtid value is
also less pronounced for the more realistic polytrope density distribution than for the single
spheroid. This is to be expected since there is less mass concentrated in the outer portion
of the polytrope model.

Figure 6.5 shows the effect of variable qrot on polytrope models with constant qtid. Once
again, we find that knm degeneracy with respect to m breaks, in agreement with Eqn. (6.44),
as qrot increases. Although the splitting of knm is somewhat diminished from the single Roche
spheroid results, the deviations are still significant at large values of qrot ∼ 10−2 consistent
with the rapidly-rotating gas giants. The shift in knm shows a nearly linear increase in
magnitude with increasing qrot, with potentially observable increases in k2 for both the ice
giant and gas giant planets. The general behavior of knm is very similar between these tests
with two very different density profiles. The relative magnitudes and directions of all knm
up to n = 6 are similar between the two cases. This indicates that the effect should be
ubiquitous in all fast-spinning liquid bodies, and relatively insensitive to the density profile
of the planet.
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Figure 6.5: Top: The effect of rotation rate on the tidal love numbers of a planet with an
n = 1 polytrope equation of state, up to order 6. The knm for a given n are found to split at
high rotation rates. qtid is kept constant at 1.0× 10−6, and the orbital radius is taken to be
that of Tethys. The vertical, dashed gray lines show qrot for Neptune, Uranus, Jupiter and
Saturn. Bottom: Shift in knm as a function of qrot on a linear scale.

Limits of the Laplace expansion and audit point calculations

One short-coming of the CMS expansion in the formalism presented in this chapter is the
fact that it has an upper limit to the rotation rate for which the method converges. The
issue surrounds the expansion of the |r− r′| in Eqn. 6.8 in powers of r′/r. In Figure 6.6
this expansion converges for the region inside the inner circle and outside the outer circle,
but diverges in the region between these two circles. Zharkov and Trubitsyn [211] concluded
that the series converged the use of this expansion is valid, as it becomes convergent upon
integration. Hubbard et al. [85] demonstrated that there is a critical rotation rate for which
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the expansion diverges and thus the method becomes unstable. For a single constant density
spheroid the critical shape is given by

` < 1,

`2 =
a2

b2
− 1.

(6.53)

This was verified through comparison of the results at the “audit point”, point A in Fig. 6.6.
At this point there is an equivalent, exact expression for the potential, which avoids use of
the expansion in question. This “audit point” also exists in the case of N spheroids, so it
provided an important test during the development of the method.

Figure 6.6: Schematic of the “audit point” calculation for a constant density spheroid with
critical degree of flattening. Figure from Hubbard et al. [85], credit: William Hubbard.

All the planet’s in our solar system rotate sufficiently slowly as to be far from the critical
degree of flattening introduced above. There are, however, astrophysical applications where
this is not the case. One of these of relevance to the planetary sciences is the possibility
of a very fast rotating Earth-Moon system in the aftermath of the moon forming impact
[45]. In this case the rotational flatting might exceed the limit in Eq. 6.53. Kong et al.
[107] presented a version of the CMS method that avoids this issue at high rotation rates
by choosing different integration domains. Unfortunately, this alternative formalism leads
to an implementation that is more computationally intensive than the one presented here.
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For this reason, we elect to use the original CMS description for rapid testing of interior
structure models.
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Chapter 7

Tidal Response of Jupiter and Saturn

7.1 Barotropes

We assume the liquid planet is in hydrostatic equilibrium,

∇P = ρ∇U, (7.1)

where P is the pressure, ρ is the mass density and U the total effective potential. Modeling
the gravitational field of such a body requires a barotrope P (ρ) for the body’s interior.
In this paper, we use the barotrope of Hubbard and Militzer [82], constructed from ab
initio simulations of hydrogen-helium mixtures [130, 131]. The P (ρ) relation is interpolated
from a grid of adiabats determined from density functional molecular dynamics (DFT-MD)
simulations using the Perdew-Burke-Ernzerhof (PBE) functional [153] in combination with a
thermodynamic integration technique. The simulations were performed with cells containing
NHe = 18 helium and NH = 220 hydrogen atoms, corresponding to a solar-like helium mass
fraction Y0 = 0.245. An adiabat is characterized by an entropy per electron S/kB/Ne [131],
where kB is Boltzmann’s constant and Ne is the number of electrons. Hereafter we refer to
this quantity simply as S.

In our treatment, the term “entropy” and the symbol S refer to a particular adiabatic
temperature T (P ) relationship for a fixed composition H-He mixture (Y0 = 0.245) as deter-
mined from the ab initio simulations. For Jupiter, the value of S in the outer portion of
the planet is determined by matching the T (P ) measurements from the Galileo atmospheric
probe (see Figure 7.4). This adiabatic T (P ) is assumed to apply to small perturbations
of composition, in terms of both helium fraction and metallicity. Hubbard and Militzer
[82] demonstrated that these compositional perturbations have a negligible effect on the
temperature distribution in the interior.

The density perturbations to the equation of state are estimated using the additive volume
law,

V (P, T ) = VH(P, T ) + VHe(P, T ) + VZ(P, T ), (7.2)

where the total volume V is the sum of partial volumes of the main components VH and
VHe, the heavy element component VZ . Hubbard and Militzer [82] demonstrated that this
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leads to a modified density ρ in terms of the original H-He EOS density ρ0,

ρ0

ρ
=

1− Y − Z
1− Y0

+
ZY0 + Y − Y0

1− Y0

ρ0

ρHe
+ Z

ρ0

ρZ
, (7.3)

in which all densities are are evaluated at the same T (P ) and Y0 is the helium fraction used
to calculate the H-He equation of state.

7.2 Saturn’s tidal response

Saturn interior models

Lainey et al. [110] present the first determination of the love number k2 for a gas giant planet
using a dataset of astrometric observations of Saturn’s coorbital moons. Their observed value
k2 = 0.390 ± 0.024 is much larger than the theoretical prediction of 0.341 by Gavrilov and
Zharkov [62]. Here we present calculations suggesting that the enhancement of Saturn’s k2 is
the result of the influence of the planet’s rapid rotation, rather than evidence for a non-static
tidal response or some other breakdown of the hydrostatic theory.

For the purposes of this calculation, we use two relatively simple models for Saturn’s
interior structure, fitted to physical parameters determined by the Voyager and Cassini
spacecraft. Table 7.1 summarizes the physical parameters used in our models. We fit our
models to minimize the difference in zonal harmonics from those determined from Cassini
[93]. We consider two different internal rotation rates based on magnetic field measurements
from Voyager [51] and Cassini [63], which lead to two different values of qrot.

In principle, the tidal response of a heterogeneous body will also be different for satellites
with different sizes and orbital parameters. To address this, we also consider the effect of
two major satellites, Tethys and Dione, with different values for qtid and R/a [7]. These two
satellites, along with their respective coorbital satellites, were used in the determination of
k2 by Lainey et al. [110].

For the interior density profile, our first model assumes a constant-density core sur-
rounded by a polytropic envelope following Eqn. (6.45). We constrain the radius of the core
to be acore/a = 0.2, leaving the mass mcore/M as a parameter which is adjusted to match
the observed Saturn J2. The fitted model using the Voyager rotation period matches both
J2 and J4 to within the error bars, but with the Cassini rotation period it matches only
J2. In hydrostatic equilibrium, the two different rotation rates lead to differences in shape
of equipotential surfaces and, therefore, also to different best fits to mcore/M . The envelope
polytrope is scaled in order to maintain M . Figure 7.1 shows the density profile of one such
model, compared to other density models. We consider a model with a total of 128 layers,
for which the CMS model has a discretization error [204] smaller than uncertainty in the
observations of Saturn’s k2.

Our second model has only four spheroids (N = 4), also depicted in Figure 7.1, with
densities and radii adjusted to yield agreement with both observed J2 and observed J4 as
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Figure 7.1: Density structure of simple Saturn models, all fitted to Saturn’s observed J2

[93]. The blue curve shows an N = 128 model with a constant-density core within r = 0.2a
and a polytropic outer envelope. The red curve shows an N = 4 model with the same
core radius and two additional spheroids, adjusted to fit both J2 and J4. For comparison,
the dash-dot curve (teal) shows Saturn model MS24 of Gudkova and Zharkov [68]. The
grey solid curve shows an unpublished Saturn model based on the density-functional theory,
molecular-dynamics (DFT-MD) equation of state for hydrogen-helium, as used in the Jupiter
model of Hubbard and Militzer [82]. Figure Credit: William Hubbard.

given in Table 7.1. With a zero-density outermost layer, this leaves two free paramters,
making it the simplest model that can match J2 and J4 exactly.

Finally, we include a third model using a more realistic H-He equation of state based
on DFT-MD simulations, following the preliminary Jupiter model of Hubbard and Militzer
[82] with a Saturn adiabat. This model has a density discontinuity (Fig. 7.1) at 0.76 Mbar
where the Saturn adiabat crosses the H-He phase separation curve of Morales et al. [136].
This allows the J2 and J4 values to be fitted exactly, by changing the metallicities above and
below the discontinuity. While still schematic, it is the most realistic of our Saturn models.

The two simple models, while not particularly realistic, capture the major features of
Saturn’s internal structure. It is well established that the details of Saturn’s internal struc-
ture are largely degenerate, with a wide range of possible core sizes and densities adequately
matching the few observational constraints [108, 76, 145]. The qualitative similarities be-
tween our single spheroid and polytrope simulations (Sections 6.4 and 6.4) indicate that
the rotational enhancement of k2 should be a robust prediction regardless of the particular
details of the interior profile. A comparison between our polytrope plus core and four layer
models provides another test of the sensitivity of k2 to interior structure. We do not consider
here the influence of differential rotation [84, 107, 34, 204], which might have an influence
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Table 7.1: Saturn Model Parameters. Identical parameters for Saturn are used with the
exception of qrot, for which the rotation rate from both Cassini and Voyager are considered.
A constant core density is fitted to match J2, J4, and J6 for a converged figure.

Cassini Voyager
GM 3.7931208× 107 a - (km3/s2)

a 6.0330× 104 a - (km)
J2 × 106 16290.71 a -
J4 × 106 −935.83 a -
J6 × 106 86.14 a -

qrot 0.1516163 b 0.1553029 c

rcore/a 0.2 -
mcore/M 0.133146 0.140478

Tethys Dione
qtid −2.791103× 10−8 d −2.364582× 10−8 d

R/a 4.8892 d 6.2620 d

a. Jacobson et al. [93], b. Giampieri et al. [63],
c. Desch and Kaiser [51], d. Archinal et al. [7]

on the gravitational response in comparison to the solid-body rotation considered here.

Calculated k2 for Saturn

We take our baseline model to be the N = 128 CMS core plus polytrope model with physical
parameters fitted to Cassini observations. Figure 7.2 shows the calculated zonal harmonics
Jn up to order n = 30. The even Jn decrease smoothly in magnitude with increasing n,
with the slope decreasing at higher n. Jn is negative when n is divisible by 4, and positive
otherwise. The calculated Jn are essentially indistinguishable from those calculated for the
rotation only case with the same qrot, as is expected given qrot � qtid. We may estimate the
maximum effect of differential rotation by considering the change of the calculated k2 as we
change the overall planetary rotation period from the Voyager value (qrot = 0.155303) to the
Cassini value (qrot = 0.151616), a relative decrease in qrot of about 2%. From Table 3, we see
that this change increases k2 by about 2% (holding J2 fixed). The net effect of a deep-seated
smooth variation of rotation rate from the Voyager value near the equator to the Cassini
value near the pole would presumably be smaller, depending on how much mass is involved
in the differential flow. Cao and Stevenson [34] have shown that the effect of realistic deep
flow patterns on low order zonal harmonics is small, but a more quantitative evaluation of
their effect on Saturn’s k2 remains to be done.

Figure 7.3 shows the magnitude of Cnm for the core plus polytrope model with Cassini
rotation. Changing the number of layers, satellite parameters or the rotation rate to the
Voyager value leads to a shift in the values, but the relative magnitudes and signs of Cnm
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Figure 7.2: The zonal harmonics Jn for the Cassini Saturn model. Positive values are
shown as filled and negative as empty.

remain approximately the same. In the same figure, we also compare the Cnm for a non-
rotating planet having the same density profile ρ(λi). Here we see significant shifts in the
Cnm magnitudes, although the signs remain the same. For the rotating model, Cnm is similar
for most points where n = m, but with magnitudes significantly larger when m < n. The
only exception to this trend is C31 which is lower for the rotating model. These results are
all broadly consistent with the splitting of knm observed for the polytrope in Section 6.4.

Table 7.2 summarizes our calculated values for k2 for several different models. The
identifying labels “Cassini” and “Voyager” use the observed rotation rate from Jacobson
et al. [93], and Desch and Kaiser [51] respectively, while “non-rotating” is a model with
qrot = 0. The “non-rotating” model uses the same “Cassini” density profile, meaning that
its density-pressure profile has not been relaxed to be in equilibrium for zero rotation. It does,
however, allow us to quantify the effect of rotation on the tidal response by comparison with
the “Cassini” model. “Tethys” and “Dione” refer to models with the satellite parameters
qtid and R/a corresponding to those satellites, whereas “no tide” is an analogous model with
finite qrot only. “N = 128” uses the polytrope outer envelope with constant density inner
core, whereas “N = 4” is the model which independently adjusts layer densities to match the
observed J2 and J4. The “DFT-MD” models use the H-He equation of state from Hubbard
and Militzer [82] with N = 511 layers.

All of the rotating and non-rotating models yields a calculated k2 value matching the
observation of Lainey et al. [110] within their error bars, with the non-rotating models are
on the low end of that range and the rotating models on the high end of that range. Our
baseline model yields k2 = 0.4130, while using the Voyager observations yields a value∼0.008
lower. We find that the difference between the k2 values associated with the satellites Tethys
and Dione is ∼0.0003, well below the current sensitivity limit. Using the ∼2.5% higher
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Table 7.2: Calculated Saturn tidal responses

modela gravitational moment normalized moment
Cassini J2 1.62907100025× 10−2 J2/qrot 0.10744694879478
no tide J4 −9.2027941201× 10−4 J4/qrot −0.606979160784× 10−2

N = 128 J6 8.014294995× 10−5 J6/qrot 0.5285905549× 10−3

non-rotating C22 8.5288× 10−10 k2 0.36669
Tethys J2 1.70576× 10−9 J2/qrot -
N = 128 J4 −1.351× 10−11 J4/qrot -
polytrope J6 2.2× 10−13 J6/qrot -
Cassini C22 9.6070× 10−10 k2 0.41304
Tethys J2 1.629071017501× 10−2 J2/qrot 0.1074469499328
N = 128 J4 −9.2027943932× 10−4 J4/qrot −0.60697917880× 10−2

polytrope J6 8.01429541× 10−5 J6/qrot 0.5285905822× 10−3

Voyager C22 9.4136× 10−10 k2 0.40473
Tethys J2 1.629071048760× 10−2 J2/qrot 0.1048963407747
N = 128 J4 −9.3570887868× 10−4 J4/qrot −0.60250556585× 10−2

polytrope J6 8.30176108× 10−5 J6/qrot 0.534552720× 10−3

Cassini C22 8.1325× 10−10 k2 0.41272
Dione J2 1.629071019035× 10−2 J2/qrot 0.1074469500340
N = 128 J4 −9.2027943688× 10−4 J4/qrot −0.60697917719× 10−2

polytrope J6 8.01429534× 10−5 J6/qrot 0.528590578× 10−3

Cassini C22 9.6219× 10−10 k2 0.41368
Tethys J2 1.629071019560× 10−2 J2/qrot 0.1074469500686
N = 4 J4 −9.3583002600× 10−4 J4/qrot −0.61723571821× 10−2

J6 8.61400043× 10−5 J6/qrot 0.568144705× 10−3

Cassini C22 9.6235× 10−10 k2 0.41375
Tethys J2 1.629070920013× 10−2 J2/qrot 0.1074469435029
N = 511 J4 −9.3582993628× 10−4 J4/qrot −0.61723565903× 10−2

DFT-MD J6 8.09366588× 10−5 J6/qrot 0.533825538× 10−3

Voyager C22 9.4185× 10−10 k2 0.40495
Tethys J2 1.629070988378× 10−2 J2/qrot 0.104896336887
N = 511 J4 −9.3583000384× 10−4 J4/qrot −0.60258355868× 10−2

DFT-MD J6 8.16661484× 10−5 J6/qrot 0.525850615× 10−3

a. Models are denoted by: rotation rate from Cassini or Voyager, satellite
parameters for Tethys or Dione, number of layers N , and the equation of state
used. DFT-MD refers to the H-He equation of state from Hubbard and Militzer [82].
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Figure 7.3: In red, the tesseral harmonics Cnm for the Cassini Saturn model. In black, Cnm
for the same density profile and same value of qtid, but with qrot = 0. Positive values are
shown as filled and negative as empty.

“Voyager” rotation rate leads to a decrease of ∼0.01 in k2.
In Table 7.2, we also show the calculated J2, J4 and J6 following the convergence of the

gravitational field in response to the tidal perturbation. For the core plus polytrope model,
the rotation rate from Voyager is more consistent with the J4 and J6 from Jacobson et al.
[93]. This doesn’t necessarily mean that the Voyager rotation rate is more correct, just that
it allows a better fit for our simplified density model. Nonetheless, our fitted gravitational
moments are much closer to each other than to those from the pre-Cassini model of Gavrilov
and Zharkov [62].

In comparison to the other models, the outlier is the non-rotating model, which underes-
timates the k2 by ∼ 9.4% compared to a rotating body with the same density distribution.
This calculated enhancement accounts for most of the difference between the observation
of k2 = 0.390 ± .024 [110] and the classical theory result of 0.341 [62]. We attribute our
non-rotating model’s larger k2 to our different interior model which matches more recent
constraints on Saturn’s zonal gravitational moments J2–J6, although the Lainey et al. [110]
error bars are still large enough to permit our non-rotating model.

We note that the later theoretical prediction of 0.386 by Vorontsov et al. [193] is also
compatible with the observed k2. Their method considers the effect of free-oscillations on
the tidal response of giant planets. While our rotating models yield higher values of k2 than
Vorontsov et al. [193] our “non-rotating” model produces a k2 smaller than theirs by ∼0.02.
In principle, it is difficult to make precise comparisons between models, because of different
assumptions about the interior structure. While consideration of dynamic tidal effects is
beyond the scope of this paper, both effects are likely to influence the tidal response of a
real planet.
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Table 7.3: Calculated Jovian Tidal Responses

planet rotation rate satellite k2

Jupiter Non-rotating Io 0.53725
Galileoa Ioa 0.58999

Europaa 0.58964
Ganymedea 0.58949

Saturn Non-rotating Tethysa 0.36669
Cassinib Tethysa 0.41375

Dionea 0.41272
Voyagerc Tethysa 0.40495

a. Archinal et al. [7], b. Giampieri et al. [63],
c. Desch and Kaiser [51]

In addition to the difference in k2, the non-rotating model also predicts slightly differ-
ent tidal components of the zonal gravitational moments. Finding the difference in values
between the “no tide” model and the analogous tidal model yields J2,tid = 1.7254 × 10−10,
J4,tid = −2.732 × 10−11 and J6,tid = 4.14 × 10−12, which are different than calculated zonal
moments for the “non-rotating” model.

It may be initially surprising that the four-layer model and the semi-realistic DFT-MD
based models yield a k2 value only slightly different than the polytrope model. The three
models represent very different density structures even though they lead to similar low-order
zonal harmonics. The fact these models are indistinguishable by their k2 suggests that the
tidal response of Saturn is only a weak function of the detailed density structure within the
interior of the planet. Indeed, the two models matching J4 are closer to each other than to
the polytrope model that does not match J4. This behavior can be understood by referring
to Eqn. (6.51), which shows that to lowest order, k2 and Λ2 contain the same information
about interior structure. This statement is not true when we include a nonlinear response to
rotation and tides. Thus, future high-precision measurements of the knm of Jovian planets,
say to better than 0.1%, will be useful for constraining basic parameters such as the interior
rotation rate of the planet, and may help to break the current degeneracy of interior density
profiles. The theory presented in this paper is intended to match the anticipated precision
of such future measurements.

7.3 Jupiter’s tidal response

The Juno spacecraft began studying Jupiter at close range following its orbital insertion in
early July 2016. The unique low-periapse polar orbit and precise Doppler measurements
of the spacecraft’s acceleration will yield parameters of Jupiter’s external gravitational field
to unprecedented precision, approaching a relative precision of ∼ 10−9 [96]. In addition
to providing important information about the planet’s interior mass distribution, the non-
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spherical components of Jupiter’s gravitational field should exhibit a detectable signal from
tides induced by the planet’s closer large moons, possibly superimposed on signals from mass
anomalies induced by large-scale dynamic flows in the planet’s interior [34, 96, 98].

As a benchmark for comparison with expected Juno data, Hubbard and Militzer [82]
constructed static interior models of the present state of Jupiter, using a barotropic pressure-
density P (ρ) equation of state for a near-solar mixture of hydrogen and helium, determined
from ab intio molecular dynamics simulations [130, 131]. In this paper, we extend those
models to predict the static tidal response of Jupiter using the three-dimensional concentric
Maclaurin spheroid (CMS) method [195].

The Hubbard and Militzer [82] preliminary Jupiter model is an axisymmetric, rotating
model with a self-consistent gravitational field, shape and interior density profile. It is
constructed to fit pre-Juno data for the degree-two zonal gravitational harmonic J2 [91].
While solutions exist matching pre-Juno data for the degree-four harmonic J4, models using
the ab initio EOS required unphysical compositions with densities lower than that expected
for the pure H-He mixture. As a result, the preferred model of Hubbard and Militzer [82]
predicts a J4 with an absolute value above pre-Juno error bars. Preliminary Jupiter models
consider the effect of a helium rain layer where hydrogen and helium become immiscible
[173]. The existence of such a layer has important effects for the interior structure of the
planet, since it inhibits convection and mixing between the molecular exterior and metallic
interior portions of the H-He envelope. This circumstance provides a physical basis for
differences in composition and thermal state between the inner and outer portions of the
planet. Adjustments of the heavy element content and entropy of the P (ρ) barotrope allow
identification of an interior structure consistent with both pre-Juno observational constraints
and the ab initio material simulations. The preferred preliminary model predicts a dense
inner core with ∼12 Earth masses and an inner hydrogen-helium rich envelope with ∼3×
solar metallicity, using an outer envelope composition matching that measured by the Galileo
entry probe.

Although the Cassini Saturn orbiter was not designed for direct measurements of the
high degree and order components of Saturn’s gravitational field, the first observational de-
termination of Saturn’s second degree Love number k2 was recently reported by Lainey et al.
[110]. This study used an astrometric dataset for Saturn’s co-orbital satellites to fit k2, and
identified a value significantly larger than the theoretical prediction of Gavrilov and Zharkov
[62]. The non-perturbative CMS method obtains values of k2 within the observational er-
ror bars for simple models of Saturn’s interior, indicating the high value can be explained
completely in terms of static tidal response [195]. The perturbative method of Gavrilov
and Zharkov [62] provides an initial estimate of tidally induced terms in the gravitational
potential, but neglects terms on the order of the product of tidal and rotational perturba-
tions. Wahl et al. [195] demonstrated, that for the rapidly-rotating Saturn, these terms are
significant and sufficient to explain the observed enhancement of k2.
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Table 7.4: Jupiter Model Parameters

Jupiter
GM 1.26686535× 108a (km3/s2)
a 7.1492× 104a (km)
J2 × 106 14696.43a

J4 × 106 −587.14a

qrot .08917920b

rcore/a 0.15

qtid −6.872× 10−7 −9.169× 10−8 −6.976× 10−8

R/a 5.90 9.39 14.98
a. Jacobson [91], b. Archinal et al. [7]

7.4 Equation of state considerations

The choice of equation of state effects the density structure of the planet, and consequently,
the distribution of heavy elements that is consistent with observational constraints. For
comparison, we also construct models using the Saumon et al. [160] equation of state (SCvH)
for H-He mixtures, which has been used extensively in giant planet modeling.

Ab initio simulations show that, at the temperatures relevant to Jupiter’s interior, there
is no distinct, first-order phase transition between molecular (diatomic, insulating) hydrogen
to metallic (monatomic, conducting) hydrogen [191]. In the context of a planet-wide model,
however, the transition takes place over the relatively narrow pressure range between ∼1-
2 Mbar. Within a similar pressure range an immiscible region opens in the H-He phase
diagram [137], which under correct conditions allows for a helium rain layer [173, 174]. By
comparing our adiabat calculations to the [137] phase diagram, we predict such a helium
rain layer in present-day Jupiter [82]. The extent of this layer in our models is highlighted
in Figure 7.4. While the detailed physics involved with the formation and growth of a
helium rain layer is poorly understood, the existence of a helium rain layer has a number
of important consequences for the large-scale structure of the planet. In our models, we
assume this process introduces a superadiabatic temperature gradient and a compositional
difference between the outer, molecular layer and inner, metallic layer.

In summary, the barotrope and resulting suite of axisymmetric Jupiter models that we
use in this investigation are identical to the results presented by Hubbard and Militzer [82].
Each model has a central core mass and envelope metallicities set to fit the observed J2 [91],
with densities corrected to be consistent with non-spherical shape of the rotating planet.
Since tidal corrections to a rotating Jupiter model are of order 10−7, see Table 7.4 and the
following section, it is unnecessary to re-fit the tidally-perturbed models to the barotrope
assumed for axisymmetric models.

The physical parameters for each of these models is summarized in Table ??. The grav-
itational moments at the planet’s surface are insensitive to the precise distribution of extra
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Figure 7.4: The barotrope used in preferred model Jupiter ‘DFT-MD 7.13’. Top:
temperature-pressure relationship for a hydrogen-Helium mixture with Y=0.245, with a en-
tropy S = 7.08 at pressures below the demixing region, and S = 7.13 at pressures above the
demixing region. The helium demixing region is shown by the gap and shaded region. The
red line shows measurements from the Galileo probe. Bottom: density-pressure relationship
for the same barotrope.

heavy-element rich material within the innermost part of the planet. For instance, the grav-
itational moments do not allow us to discern between a model with a dense rocky core and
a model without a dense rocky core but with same amount of heavy element distributed
in a larger but restricted volume in the deep interior. Maintaining a constant core radius
is computationally convenient when finding a converged core mass to J2, since it requires
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Table 7.5: Jupiter model parameters from [82]. S is the specific entropy for the adiabat
through the inner or outer H-He envelope. M is the mass of heavy elements included in each
layer. Each model matches observed J2 = 14696.43 × 106 [91], JUP230 orbit solution, to
six significant figures. Models denoted as ’DFT-MD’ if equation of state based on ab initio
simulations or ’SC’ for the Saumon et al. [160] equation of state, with a number denoting
the entropy below the helium demixing layer. The number of Models denoted with (J4) also
match observed J4 = −596.31× 10−6. Model denoted (equal-Z) is constrained to have same
metallicity in inner and outer portions of the planet. Preferred interior models shown in
bold face.

Smolec. Smetal. Mcore MZ,molec. MZ,metal. Zglobal

(S/kB/Ne) (S/kB/Ne) (ME) (ME) (ME)
DFT-MD 7.24 7.08 7.24 12.5 0.9 10.3 0.07
DFT-MD 7.24 (equal-Z) 7.08 7.24 13.1 1.1 7.5 0.07
DFT-MD 7.20 7.08 7.20 12.3 0.8 9.9 0.07
DFT-MD 7.15 7.08 7.15 12.2 0.7 9.2 0.07
DFT-MD 7.15 (J4) 7.08 7.15 9.7 −0.6 14.9 0.08
DFT-MD 7.13 7.08 7.13 12.2 0.7 8.9 0.07
DFT-MD 7.13 (low-Z) 7.08 7.15 14.0 0.2 1.1 0.05
DFT-MD 7.08 7.08 7.08 12.0 0.6 8.3 0.07
SC 7.15 7.08 7.15 4.8 3.5 28.2 0.11
SC 7.15 (J4) 7.08 7.15 4.3 3.2 29.3 0.12

no modification of the radial grid used through the envelope. For this reason we consider
models with a constant core radius of 0.15a. Decreasing this radius below 0.15a for a given
core mass has a negligible effect on the calculated gravitational moments [82]. Figure 7.5
shows the density profile for two representative models. In general, models using the DFT-
MD equation of state lead to a larger central core and a lower envelope metallicity than
those using SCvH. Hubbard and Militzer [82] also noted that these models predict a value
for J4 outside the reported observational error bars [91], since they would require unrealistic
negative values of Z to match both J2 and J4.

State mixing for static Love numbers

In the CMS method applied to tides, we calculate the tesseral harmonics Cnm directly, and
the Love numbers knm are then calculated using Eq. 6.42. For the common tidal problem
where qtid and qrot are carried to first order perturbation only, this definition of knm removes
all dependence on the small parameters qtid and a/R, which is convenient for calculating
the expected tidal tesseral terms excited by satellites of arbitrary masses at arbitrary orbital
distances. However, the high-precision numerical results from our CMS tidal theory reveal
that when qrot ≈ 0.1, as is the case for Jupiter and Saturn, the mixed excitation of tidal
and rotational harmonic terms in the external gravity potential has the effect of introducing
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Figure 7.5: Density structure of Jupiter models (the planetary unit of density ρpu = M/a3).
The red curve shows our preferred model based on ab initio calculations. The blue curve uses
the Saumon and Chabrier equation of state. The shaded area denotes the helium demixing
region. Both models have N = 511 layers and a dense core within r = 0.15a. Constant core
densities are adjusted to match J2 as measured by fits to Jupiter flyby Doppler data [91].

a small but significant dependence of k22 on a/R; see Fig. 7.9. In the absence of rotation,
the CMS calculations yield results without any state mixing, and the knm are, as expected,
constant with respect to a/R. It is important to note this effect on the static Love numbers
because, as we discuss below, dynamical tides can also introduce a dependence on a/R via
differing satellite orbital frequencies.

Calculated static tidal response

The calculated zonal harmonics Jn and tidal Love numbers knm for all of the Jupiter models
with Io satellite parameters are shown in Tab. 7.5. Our preferred Jupiter model has a cal-
culated k2 of 0.5900. In all cases, these Love numbers are significantly different from those
predicted for a non-rotating planet (see Tab. 7.6). Fig. 7.7 shows the different tesseral har-
monics Cnm calculated with and without rotation. For a non-rotating planet with identical
density distribution to the preferred model we find a much smaller k22 = 0.53725. Juno
should, therefore, be able to test for the existence of the rotational enhancement of the tidal
response.

The effect of the interior mass distribution for a suite of realistic models has a mini-
mal effect on the tidal response. Most models using the DFT-MD barotrope are within
a 0.0001 range of values. The one outlier being the model constrained to match J4 with
unphysical envelope composition. The models using the SCvH barotrope yields slightly
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Figure 7.6: Top: Relative contribution of spheroids to external gravitational zonal harmonic
coefficients up to order 8. Bottom: Relative contribution of spheroids to to external gravi-
tational tesseral coefficients up to order 4. Tesseral moments of the same order (i.e. C31 and
C33) have indistinguishable radial distributions. Values normalized so that each harmonic
integrates to unity. The shaded area denotes the helium demixing region.

lower, but still likely indistinguishable values of k22. The higher order harmonics show larger
relative differences between models, but still below detection levels. Regardless, the zonal
harmonic values are more diagnostic for differences between interior models than the tidal
Love numbers. Fig. 7.9 summarizes these results, and shows that the calculated k22 value
varies approximately linearly with J4. If Juno measures higher order tesseral components of
the field, it may be able to verify a splitting of the knm Love numbers with different m, for
instance, a predicted difference between k31 ∼ 0.19 and k33 ∼ 0.24.

In addition, we find small, but significant, differences between the tidal response between
Jupiter’s most influential satellites. Fig. 7.8 shows the calculated Cnm for simulations with
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Figure 7.7: The tesseral harmonic magnitude Cnm for the ‘DFT MD 7.13’ Jupiter model
with a tidal perturbation corresponding to Io at its average orbital distance. Black: the
values calculated with Jupiter’s rotation rate; red: the values for a non-rotating body with
identical layer densities. Positive values are shown as filled and negative as empty.
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Figure 7.8: The tesseral harmonic magnitude Cnm for the ‘DFT MD 7.13’ Jupiter model
with a tidal perturbation corresponding to different satellites: Io (black), Europa (red) and
Ganymede (blue).

Io, Europa and Ganymede. We attribute the dependence on orbital distance to the state
mixing described in Section 7.4. This leads to a difference in k22 between the three satellites
(Tab. 7.6) that may be discernible in Juno’s measurements.
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Figure 7.9: Predicted k2 Love numbers for Jupiter models plotted against J4. The favored
interior model ‘DFT-MD 7.13’ with a tidal perturbation from Io is denoted by the red
star. The other interior models with barotropes based on the DFT-MD simulations (blue)
have k2 forming a linear trend with J4. Models using the Saumon and Chabrier barotrope
(green) plot slightly above this trend. The of k2 for a single model ‘DFT-MD 7.13’ with
tidal perturbations from Europa and Ganymede (yellow) show larger differences than any
resulting from interior structure.

7.5 Correction for dynamical tides

Small correction for non-rotating model of Jupiter

The general problem of the tidal response of a rotationally-distorted liquid Jovian planet to a
time-varying perturbation from an orbiting satellite has not been solved to a precision equal
to that of the static CMS tidal theory of Wahl et al. [195] and this paper. However, an elegant
approach based on free-oscillation theory has been applied to the less general problem of a
non-rotating Jovian planet perturbed by a satellite in a circular orbit [193]. Let us continue
to use the spherical coordinate system (r, θ, φ), where r is radius, θ is colatitude and φ is
longitude. Assume that the satellite is in the planet’s equatorial plane (θ = π/2) and orbits
prograde at angular rate ΩS. For a given planet interior structure, Vorontsov et al. [193] first
obtain its eigenfrequencies ω`mn and orthonormal eigenfunctions u`mn(r, θ, φ), projected on
spherical harmonics of degree ` and order m (the index n = 0, 1, 2, ... is the number of radial
nodes of the eigenfunction). Note that in their convention, oscillations moving prograde (in
the direction of increasing φ) have negative m, whereas some authors, e.g. Marley and Porco
[121] use the opposite convention.

Treating the tidal response as a forced-oscillation problem, equation (24) of Vorontsov
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et al. [193], the vector tidal displacement ξ then reads

ξ(r, t) = −
∑
`,m,n

(u`,m,n,∇ψr`m)

ω2
`mn −m2Ω2

S

e−imΩSt, (7.4)

where (u`,m,n,∇ψr`m) is the integrated scalar product of the vector displacement eigenfunction
u`mn(r, θ, φ) and the gradient of the corresponding term of the satellite’s tidal potential
ψr`m(r, θ, φ, t), viz.

(u`,m,n,∇ψr`m) =

∫
dV ρ0(r)(u`,m,n · ∇ψr`m). (7.5)

The integral is taken over the entire spherical volume of the planet, weighted by the unper-
turbed spherical mass density distribution ρ0(r).

Vorontsov et al. [193] then show that, for the nonrotating Jupiter problem, the degree-
two dynamical Love number k2,d is determined to high precision (∼ 0.05%) by off-resonance
excitation of the ` = 2,m = 2, n = 0 and ` = 2,m = −2, n = 0 oscillation modes, such that

k2,d =
ω2

220

ω2
220 − (2ΩS)2

k2, (7.6)

noting that ω220 and ω2−20 are equal for nonrotating Jupiter (all Love numbers in the present
paper written without the subscript d are understood to be static). For a Jupiter model fitted
to the observed value of J2, Vorontsov et al. [193] set ΩS = 0 to obtain k2 = 0.541, within
0.7% of our nonrotating value of 0.53725 (see Table 7.6). Setting ΩS to the value for Io,
Eq. 7.6 predicts that k2,d = 0.547, i.e. the dynamical correction increases k2 by 1.2%. This
effect would be only marginally detectable by the Juno measurements of Jupiter’s gravity,
given the expected observational uncertainty.

Dynamical effects for rotating model of Jupiter

For a more realistic model of Jupiter tidal interactions, the dynamical correction to the tidal
response might be larger, and therefore, more detectable. We have already shown (Table 4)
that inclusion of Jupiter’s rotational distortion increases the static k2 by nearly 10% above
the non-rotating static value for a spherical planet. In this section, we note that Jupiter’s
rapid rotation may also change Jupiter’s dynamic tidal response, by a factor that remains
to be calculated.

In a frame co-rotating with Jupiter at the rate ΩP = 2π/35730s, the rate at which the
subsatellite point moves is obtained by the scalar difference ∆Ω = ΩS−ΩP , which is negative
for all Galilean satellites. Thus, in Jupiter’s fluid-stationary frame, the subsatellite point
moves retrograde (it is carried to the west by Jupiter’s spin). For Io, we have ∆Ω = −1.35×
10−4 rad/s. Jupiter’s rotation splits the ω2±20 frequencies [192], such that ω2−20 = 5.24×10−4

rad/s and ω220 = 8.73× 10−4 rad/s. The oscillation frequencies of the Jovian modes closest
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Table 7.7: Tidal Response for Various Satellites and Non-rotating Model. Tidal response of
preferred interior model ‘DFT MD 7.13’ with qtid and R/a for three large satellites, and for
a ‘non-rotating’ model with qrot = 0. In bold face is the same preferred model as in

Io Ioa Europa Ganymede
non-

rotating
k22 0.58999 0.53725 0.58964 0.58949
k31 0.1941 0.2283 0.1938 0.1937
k33 0.2437 0.2283 0.2435 0.2435
k42 1.787 0.1311 4.357 12.41
k44 0.1387 0.1311 0.1386 0.1386
k51 0.9766 0.0860 2.373 6.7486
k53 0.8446 0.0860 2.0289 5.740
k55 0.0907 0.0860 0.0906 0.0906
k62 6.167 0.0610 37.04 302.1
k64 0.5189 0.0610 1.237 3.487
k66 0.0642 0.0610 0.0641 0.0641
a. Non-rotating model has identical density

structure to rotating model.

to tidal resonance with Io are higher than the frequency of the tidal disturbance in the fluid-
stationary frame, but are closer to resonance than in the case of the non-rotating model
considered by Vorontsov et al. [193].

An analogous investigation for tides on Saturn raised by Tethys and Dione yields results
similar to the Jupiter values: tides from Tethys or Dione are closer to resonance with normal
modes for ` = 2 and m = 2 and m = −2. Since our static value of k2 for Saturn [195]
is robust to various assumptions about interior structure and agrees well with the value
deduced by Lainey et al. [110], so far we have no evidence for dynamical tidal amplification
effects in the Saturn system.

Unlike the investigation of Lainey et al. [110], which relied on analysis of astrometric
data for Saturn satellite motions, the Juno gravity investigation will attempt to directly
determine Jupiter’s k2 by analyzing the influence of Jovian tesseral-harmonic terms on the
spacecraft orbit. A discrepancy between the observed k2 and our predicted static k2 would
indicate the need for a quantitative theory of dynamical tides in rapidly rotating Jovian
planets.

7.6 Summary

The non-perturbative CMS method for calculating a self-consistent shape and gravitational
field of a static liquid planet has been extended to include the effect of a tidal potential from
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a satellite. This is expected to represent the largest contribution to the low-order tesseral
harmonics measured by Juno and future spacecraft studies of the gas giants. This approach
has been benchmarked against analytical results for the tidal response of the constant density
Jeans/Roche spheroid, a two constant density layer model and the polytrope of index unity.

We highlight for the first time an important effect of rapid rotation on the tidal response
of the gas giants. CMS simulations of the tidal response on bodies with large rotational
flattening show significant deviation in the tesseral harmonics of the gravitational field as
compared to simulations without rotation. This includes splitting of the love numbers into
different knm for any given order n > 2. Meanwhile, it leads to an observable enhancement
in k2 compared to a non-rotating model.

This rotational enhancement of the k2 love number for a simplified interior model of
Saturn agrees with the recent observational result [110], which found k2 to be much higher
than previous predictions. Our predicted values of k2 are robust for reasonable assumptions
of interior structure, rotation rate and satellite parameters. The Juno spacecraft is expected
to measure Jupiter’s gravitational field to sufficiently high precision to measure lower order
tesseral components arising from Jupiter’s large moons, and we predict an analogous rota-
tional enhancement of k2 for Jupiter. Our high-precision tidal theory will be an important
component of the search for non-hydrostatic terms in Jupiter’s external gravity field.

Our study has predicted the static tidal Love numbers knm for Jupiter and its three
most influential satellites. These results have the following features: (a) They are consistent
with the most recent evaluation of Jupiter’s J2 gravitational coefficient; (b) They are fully
consistent with state of the art interior models [82] incorporating DFT-MD equations of
state, with a density enhancement across a region of H-He imiscibility [137]; (c) We use the
non-perturbative CMS method for the first time to calculate high-order tesseral harmonic
coefficients and Love numbers for Jupiter.

The combination of the DFT-MD equation of state and observed J2n strongly limit the
parameter space of pre-Juno models. Within this limited parameter space, the calculated
knm show minimal dependence on details of the interior structure. Despite this, our CMS
calculations predict several interesting features of Jupiter’s tidal response that the Juno
gravity science system should be able to detect. In response to the rapid rotation of the planet
the k2 tidal Love number is predicted to be much higher than expected for a non-rotating
body. Moreover, the rotation causes state mixing between different tesseral harmonics,
leading to a dependence of higher order static knm on both m and the orbital distance of
the satellite. An additional, significant dependence on a/r is expected in the dynamic tidal
response. We present an estimate of the dynamical correction to our calculations of the
static response, but a full analysis of the dynamic theory of tides has yet to be performed.
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Chapter 8

Interpreting Juno’s measurements of
Jupiter’s Gravitational Field

8.1 Introduction

The Juno spacecraft entered an orbit around Jupiter in July of 2016, and since then has
measured Jupiter’s gravitational field to high precision [22]. Here we present a preliminary
suite of interior structure models for comparison with the low order gravitational moments
(J2, J4, J6 and J8) measured by Juno during its first two perijoves [57]. The state of the
measured gravitational harmonics prior to Juno is presented in Fig. 8.1.
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Figure 8.1: Improvement in measurements of Jupiter’s first even zonal harmonics, as a
function of year (abscissa). All Jn values are normalized to a = 71492 km, and referenced
to theoretical values from a recent Jupiter model [82], horizontal red line. Figure Credit:
William Hubbard.



CHAPTER 8. INTERPRETING JUNO’S MEASUREMENTS OF JUPITER’S
GRAVITATIONAL FIELD 108

A well constrained interior structure is a primary means of testing models for the forma-
tion of the giant planets. The abundance and distribution of elements heavier than helium
(subsequently referred to as “heavy elements”) in the planet is key in relating gravity mea-
surements to formation processes. In the canonical model for the formation of Jupiter, a
dense core composed ∼10 M⊕ (Earth masses) of rocky and icy material forms first, followed
by a period of rapid runaway accretion of nebular gas [134, 20, 156]. Recent formation
models suggest that even in the core accretion scenario, the core can be small (∼ 2 M⊕)
or be diffused with the envelope [188, 117]. If Jupiter formed by gravitational instability,
i.e., the collapse of a region of the disk under self-gravity [24], there is no requirement for
a core, although a core could still form at a later stage [75]. Even if the planet initially
formed with a distinct rock-ice core, at high pressures and temperatures these core materials
become soluble in liquid metallic hydrogen [172, 201, 203, 194, 65]. As a result, the core will
erode and the heavy material will be redistributed outward to some extent. In this study
we consider the effect of such a dilute core, in which the heavy elements have expanded to
a significant fraction of Jupiter’s radius.

Significant progress has been made in understanding hydrogen-helium mixtures at plan-
etary conditions [160, 159, 191, 129, 59, 143, 130, 12, 132], but interior model predictions
are still sensitive to the hydrogen-helium equation of state used [82, 128]. In Section 8.2
we describe the derivation of barotropes from a hydrogen-helium equation of state based on
ab-initio materials simulations [130, 82], make comparisons to other equations of states, and
consider simple perturbations to better understand their effect on the models. In Section 8.2
we describe details of these models including a predicted layer of ongoing helium rain-out
[173, 174, 136, 116, 202, 137], with consideration of a dilute core in Section 8.2. We then
describe the results of these models in terms of their calculated Jn (Section 8.3) and heavy
element mass and distribution (Section 8.3). Finally, in Section 8.4 we discuss these results
in relation to the present state of measurements of, as well as theory for the formation and
evolution of Jupiter.

8.2 Materials and methods

Equations of state

The ab initio simulations for MH13 were performed at a single, solar-like helium mass frac-
tion, Y0 = 0.245. The precise abundance and distribution for both helium and heavy element
fractions are, a priori unknown. These are quantified in terms of their local mass fractions,
Y and Z. Our models consider different proportions of both components by perturbing the
densities using a relation derived from the additive value law [82]. For the helium density
we use the pure helium end-member of SCvH. We assume a density ratio of heavy element
to hydrogen helium mixture, ρ0/ρZ , of 0.38 for pressures below 100 GPa, corresponding to
heavy element composition measured by the Galileo entry probe [206], and 0.42 for a solar
fraction at higher pressures; see discussion in Hubbard and Militzer [82]. The MH13 equa-
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tion of state uses density functional theory molecular dynamics (DFT-MD) simulations in
combination with a thermodynamic integration to find the entropy of the simulated material.
This allows one to directly characterize an adiabat for the ab initio equation of state as the
T (P ) path in which the simulated entropy per electron S/kB/Ne remains constant. Here kB
is Boltzmann’s constant and Ne is the number of electrons. In the following discussion, the
term “entropy” and the symbol S are used interchangeably to refer to the particular adia-
batic temperature profile through regions of the planet presumed to be undergoing efficient
convection. In this work, we assume that the compositional perturbations have a negligible
effect on the isentropic temperature profile [168].

Models calculated with REOS3 followed the approach described by Miguel et al. [128]:
We fitted separately the core mass and composition in heavy elements. The helium content
of the molecular region was fixed to the Galileo value while the increase in helium abundance
in the metallic region was calculated to reproduce the protosolar value. The abundance of
heavy elements was allowed to be different in the molecular and metallic regions.

Barotropes

Most of the results presented are based on density functional theory molecular dynamics
(DFT-MD) simulations of hydrogen-helium mixtures from Militzer [130] and Militzer and
Hubbard [131] (MH13). For densities below those determined by the ab initio simulations
(P < 5 GPa), we use the Saumon et al. [160] equation of state (SCvH), which has been
used extensively in giant planet modeling. The benefits of this simulation technique lie in
its ability to determine the behavior of mixture through the metallization transition, and
to directly calculate entropy for the estimation of adiabtic profiles. The barotropes are
parameterized in terms of helium and heavy element mass fraction Y and Z, and specific
entropy S as a proxy for the adiabatic temperature profile.

For comparison, we consider models using the ab initio equations of state of hydrogen
and helium calculated by Becker et al. [12](REOS3) with the procedure for estimating the
entropy described by Miguel et al. [128]. Finally, we also consider models using the SCvH
EOS through the entire pressure range of the planet. Although the SCvH EOS does not
fit the most recent data from high-pressure shockwave experiments [82, 128], it is useful for
comparison since it has been used to constrain Jupiter models in the past [e.g. 159].

Different equations of state affect model outcomes in part by placing constraints on the
allowable abundance and distribution of heavy elements. The DFT-MD isentrope consistent
with the Galileo probe measurements has higher densities, and a less steep isentropic tem-
perature profile than SCvH in the vicinity of the metallization transition [130, 132]. The
H-REOS equation of state has a similar shape to the T (P ) profile, but has an offset in
temperature of several hundred K through much of the molecular envelope [143, 82, 128].

DFT-MD simulation is the best technique at present for determining densities of hydrogen-
helium mixtures over most of conditions in a giant planet (P > 5 GPa). There is, however,
a poorly characterized uncertainty in density for DFT-MD calculations. Shock-wave experi-
ments are consistent with DFT, but can only test their accuracy to, at best ∼6 % [105, 27].
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Figure 8.2: Fitting procedure for determining the model entropy in in the outer envelope, S1.
Here the red curve is the SCvH isentrope that best fits the Galileo temperature measurements
[163]. Figure Credit: Burkhard Militzer.

Moreover, there is a necessary extrapolation between ∼5 GPa, where the simulations be-
come too computationally expensive [130, 131], and ∼10 bar where the deepest temperature
measurements from the Galileo probe were obtained [163]. We consider perturbations to
the MH13 equation of state in the form of an entropy jump, ∆S, at a prescribed pressure
in the outer, molecular envelope; increases of S from 7.07 up to 7.30 (with S in units of
Boltzmann constant per electron) are considered. These perturbations test the effect of a
density decrease through the entire envelope (P =0.01 GPa), at the switch from SCvH to
DFT (5.0 GPa), and near the onset of the metalization transition (50.0 GPa).

Gravitational moments for the models are calculated using the non-perturbative concen-
tric Maclaurin spheroid (CMS) method [86, 87, 82, 195]; see Chapter 6 for details.

Model assumptions

One of the most significant structural features of Jupiter’s interior arises from a pressure-
induced immiscibility of hydrogen and helium, which allows for rain-out of helium from the
planet’s exterior to interior [173, 174]. Ab initio simulations [136, 116, 202, 137] predict that
the onset of this immiscibility occurs around ∼100 GPa, over a similar pressure range as
the molecular to metallic transition in hydrogen. At higher pressures, the miscibility gap
closure temperature remains nearly constant with pressure, such that in the deep interior
temperatures are sufficient for helium to become miscible again.
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Figure 8.3: Density profiles of representative models. Solid lines denote models using MH13,
while dashed use REOS3. In black is a model with S, Y and Z matching that measured
by the Galileo entry probe, and a core with constant enrichment of heavy elements inside
r/rJ=0.15. In red (Model D) Z=0.007 in the molecular envelope and constant Z-enriched,
dilute core expanded to r/rJ ∼ 0.50 to fit the J4 observed by Juno. In blue (Model E) with
Z=0.007 also fitting J4 with Gaussian Z profile. In orange (Model R) and green (Model S)
are profiles for the REOS3 models fitting J4 with a compact and dilute core, respectively.
(Inset) Schematic diagram showing the approximate location of the helium rain layer, and
dilute core.

The MH13 adiabats cross the Morales et al. [137] phase diagram such that helium rain-out
occurs between ∼100-300 GPa [132]. This is consistent with the sub-solar Y measurement
made by the Galileo entry probe [190]. The REOS3 adiabats are significantly warmer and
require adjustments to the phase diagram in order to explain the observations [144]. Al-
though the detailed physics involved with the formation and growth of a helium rain layer
is poorly understood [59], the existence of a helium rain layer has a number of important
consequences for the thermal and compositional structure of the planet.

We calculate the abundance of helium in both the upper helium-poor (molecular hy-
drogen) region and lower helium-rich (metallic hydrogen) region by enforcing a helium to
hydrogen ratio that is globally protosolar. We also allow for a compositional gradient of
heavy elements across the layer with a mass mixing ratio that changes from Z1 in the lower
layer to Z2 in the upper layer.
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Figure 8.4: Hydrogen-helium miscibility diagram. The solid lines show DFT-MD adiabats
from Militzer [130] labeled with their entropy in units of kb per electron. The shaded area
is the immiscibility region calculated by Morales et al. [137] that we extrapolated towards
higher pressures.

Dilute core

The thermodynamic stability of various material phases in giant planet interiors has been
assessed using DFT-MD calculations [201, 203, 194, 65]. These calculations suggest that at
the conditions at the center of Jupiter, all likely abundant dense materials will dissolve into
the metallic hydrogen-helium envelope. Thus, a dense central core of Jupiter is expected to
be presently eroded or eroding. However, the redistribution of heavy elements amounts to a
large gravitational energy cost and the efficiency of that erosion is difficult to assess [see 72]. It
was recently shown by Vazan et al. [187], that redistribution of heavy elements by convection
is possible, unless the initial composition gradient is very steep. Some formation models
suggest that a gradual distribution of heavy elements is an expected outcome, following the
deposition of planetesimals in the gaseous envelope [117]. The formation of a compositional
gradient could lead to double-diffusive convection [36, 112] in Jupiter’s deep interior, which
could lead to a slow redistribution of heavy elements, even on planetary evolution timescales.

In a selection of the models presented here, we consider Jupiter’s “core” to be a region
of the planet in which Z is enriched by a constant factor compared to the envelope region
exterior to it. This means that the model core is a diffuse region composed largely of
the hydrogen-helium mixture. In fact, this configuration is not very different from the
internal structure derived by Lozovsky et al. [117] for proto-Jupiter. Given the current
uncertainty in the evolution of a dilute core, we consider models with core in various degrees
of expansion, 0.15 < r/rJ < 0.6. In a few models, we also test the importance of the
particular shape of the dilute core profile by considering a core with a Gaussian Z profile
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Figure 8.5: The two diagrams show the fractional radius and pressure as a function of
fractional mass For a representative Jupiter interior model. Figure Credit: Burkhard Miltzer.

instead. Fig. 8.3 demonstrates the density profiles resulting from these different assumptions
about the distribution of core heavy elements.

8.3 Results

Reference interior model

The reference model (model A) fixes parameters in the outer (molecular) envelope to those
measured by the Galileo entry probe: S = 7.074, Y = 0.2333 and Z = 0.0169. It should be
noted that the Z from Galileo is based on a measurement showing sub-solar ratio of H2O
to other ices (i.e. CH4 and NH3) [206]. It has been hypothesized that the entry probe may
have descended through an anomalously dry region of Jupiter’s atmosphere, in which case
this value of Z may be an underestimate. The helium ratio of the deep (metallic) envelope
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corresponds to the layers in figure 8.5 Figure Credit: Burkhard Militzer.

is chosen assuming that the Galileo Y was depleted from a solar composition by helium rain
, and the deep entropy is chosen as a moderate enhancement across the helium rain layer,
S = 7.13. An upper and lower pressure of the helium rain layer are determined by finding
where the two adiabatic profiles for the inner and outer envelope intersect the [137] phase
diagram. This step is done self-consistently for all values of S, except in a few extreme cases
where the corresponding adiabat does not intersect the phase diagram.

The interior structures of the REOS3 models presented here differ in the treatment of
the helium rain, assuming a 3-layer boundary with a sharp transition between the molecular
and metallic envelopes. The difference J6 between the REOS3 model with the compact core
(model X) and the perturbed EOS (model F) can be attributed to this structural difference.

The MH13 models assume that the helium-rain layer is superadiabatic, a natural conse-
quence of inefficient convection [132]. In the case of the REOS3 models, because the adiabat
is significantly warmer, the presence of such a superadiabatic region has minor quantitative
consequences on the solutions and was not considered. In that case, we used the approach
described in Miguel et al. [128].

Comparison to Juno

The even zonal moments observed by Juno after the first two perijoves [57] are broadly
consistent with the less precise predictions of Campbell and Synnott [30] and Jacobson
[91], but inconsistent with the more recent JUP310 solution [92]. Table 8.1 compares these
observations with a few representative models. While the formal uncertainties on these
quantities are already quite small [57], the dynamical contributions to them is still unknown.
Although the solid-body (static) contribution dominates this low-order, even part of the
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gravity spectrum [81], a small dynamical contribution above Juno’s expected sensitivity
must be considered [96]. For sufficiently deep flows, these contributions could be many
times larger than Juno’s formal uncertainties for Jn [97], and thus represent the conservative
estimate of uncertainty for the purpose of constraining the interior structure. Thus, ongoing
gravity measurements by Juno, particularly of odd and high order, even Jn, will continue to
improve our understanding of Jupiter’s deep interior [98]. Marked in yellow in Fig 8.7, is the
possible uncertainty considering a wide range of possible flows, and finding a corresponding
density distribution assuming the large scale flows are to leading order geostrophic [99]. The
relatively small range in our model J6 and J8 compared to these uncertainties suggests flow
in Jupiter are shallower than the most extreme cases considered by Kaspi et al. [97]. This
density distribution is then integrated to calculate the dynamical contribution to the gravity
spectrum.

Model trends

It is evident that the Jn observed by Juno are not consistent with the “preferred” model put
forward by Hubbard and Militzer [82], even considering differential rotation. Nonetheless,
we begin with a similar model (Model A in Tab. 8.1) since it is illustrative of the features of
the model using the MH13 equation of state with reasonable pre-Juno estimates for model
parameters.

In order to increase J4 for a given planetary radius and J2, one must either increase the
density below the 100 GPa pressure level or conversely decrease the density above that level
[69, their Fig. 5]. We explore two possibilities: either we raise the density in the metallic
region by expanding the central core, or we consider the possibility of an increased entropy
in the molecular region.

Fig. 8.7 shows the effect of increasing the radius of the dilute core on J4 and J6. Starting
with the MH13 reference model with r/rJ = 0.15 (Model A), the core radius is increased
incrementally to r/rJ ∼ 0.4, above which the model becomes unable to fit J2. Therefore,
considering an extended core shifts the higher order moments towards the Juno values, but is
unable to reproduce J4, even considering a large dynamical contribution to Jn. Fig.8.8 shows
a similar trend for J8, although the relative change in J8 with model parameters compared
to the observed value is less significant than for J4 and J6.

Precisely matching Juno’s value for J4 with the MH13 based models presented here,
requires lower densities than the reference model through at least a portion of the outer,
molecular envelope. In the absence of additional constraints, this can be accomplished by
lowering Y or Z, or by increasing S (and consequently the temperature). In Fig. 8.7 this
manifests itself as a nearly linear trend in J4 and J6 (black ‘+’ symbols), below which
there are no calculated points. This trend also improves the agreement of J4 and J6 with
Juno measurements, but with a steeper slope in J6/J4 than that from the dilute core. For
∆S ∼ 0.14 applied at P =0.01 GPa, a model with this perturbed equation of state can
match the observed J4, with a mismatch in J6 of ∼ 0.1 × 10−6 below the observed value
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Figure 8.7: Zonal gravitational moments J4 and J6 for interior models matching the measured J2. (Upper)

The blue rectangle shows the uncertainty of the Juno measurements as of perijove 2 [57]. The yellow ellipse

shows the effective uncertainty in the static contribution due possible deep differential rotation [97] and with

flow restricted to 10000 km (dash-dot), 3000 km (dashed), and 1000 km (solid). The blue star is the reference

(Model A, Tab. 8.1) with Z1 = ZGal matching that measured by the Galileo entry probe, and an core of

r/rJ=0.15. The blue squares show how these results change as a dilute core with a constant Z1 enrichment

and core radius r increasing to the right. The green and red circles denote similar expanding core trends

with lowered outer envelope heavy element fraction to Z1=0.007 and Z2=0.01, respectively. The ‘+’s denote

models which take perturb the MH13 EOS by introducing a jump in S at P=0.01 (black), P=5.0 (blue) and

P=50.0 GPa (red), with Z11 decreasing to the right. Black diamonds show models using the SCvH EOS.

(Lower) Models fitting the observed J4 yield larger J6 with increasing core radii. The stars denote models

B, C, D, E, & F in Table 8.1. Violet diamonds show models using the REOS3 EOS (Models R, S & T).

Black and green ‘x’s show models starting with the green star (dilute core, Z1=0.007) and changing the S of

the deep interior or the pressure of the onset of helium rain. Red, green and cyan stars show models fitting

the measured J4 with the radius of the dilute core. Black Star shows model fitting J4 with with the entropy

jump magnitude ∆S.
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(Model F). When the ∆S perturbation is applied at higher pressures (P = 5.0 and 50.0
GPa), a larger ∆S is needed to produce the same change in J4.
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Figure 8.8: Zonal gravitational moments J4 and J8 for interior models matching the mea-
sured J2. The rectangles show the uncertainty of the Juno measurements as of perijove 2
[57].The yellow region shows the effective uncertainty in the static contribution due possible
deep differential rotation [97]. Symbols refer to identical models as in Fig. 2 in the main
text.

We also consider a number of models with both a decrease in the density of the outer,
molecular layer and a dilute core. Here we present MH13 models where the core radius is
increased for models with outer envelope Z = 0.010, 0.007 or 0.0. Above Z ∼ 0.010 the
models are unable to simultaneously match J2 and J4. The models with Z = 0.010 and
Z = 0.007 can both fit J4, but with a J6 ∼ 0.1× 10−6 above the observed value (Models C
& D). These models also require extremely dilute cores with r/rJ ∼ 0.5 in order to match
J4. A more extreme model with no heavy elements (Z = 0) included in the outer, molecular
envelope (Model B) can simultaneously match J4 and J6 within the current uncertainty, with
a less expansive core with r/rJ ∼ 0.27. The dilute core using the Gaussian profile and an
outer envelope Z = 0.007 (Model E), has a very similar trend in J4–J6, although it is shifted
to slightly lower values of J6.

There are a number of other model parameters which lead to similar, but less pronounced,
trends than the dilute core. Starting with Model C, we test shifting the onset pressure for
helium rain, between 50 to 200 GPa, and the entropy in the deep interior, S = 7.07 to 7.30
(lower frame in Fig. 8.7). Both modifications exhibit a similar slope in J4–J6 to the models
with different core radii, but spanning a smaller range in J4 than for the dilute core trend.
Figure 8.9 shows how much J6 changes when Model F is perturbed by shifting either the
onset pressure, of the thickness of the helium rain layer.
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Figure 8.9: Change in zonal gravitational harmonic and J6 for model F (black star), when
onset pressure is is shifted to 50 or 200 GPa (red diamonds), or the layer width is decreased
to allow only a narrow helium rain layer (green diamond) matching the measured J2.

The models using REOS3 have a significantly hotter adiabatic T profile than MH13.
Models R and S (8.1) are two example solutions obtained with the REOS3 adiabat, for a
3-layer model with a compact core, and when adding a dilute core, respectively. Because
of the flexibility due to the larger Z values that are required to fit Jupiter’s mean density,
there is a wide range of solutions [143, 128] with J4 values that can extend all the way from
−599× 10−6 to −586× 10−6, spanning the range of values of the MH13 solutions. Model T
corresponds to a model calculated with the same ∆Z discontinuity at the molecular-metallic
transition as Model S but with a compact instead of dilute core. This shows that, as in the
case of the MH13 EOS, with all other parameters fixed, a dilute core yields larger J4 values.

For both DFT-based equations of state, we find that heavy element abundances must
increase in the planet’s deep interior. The required ∆Z across the helium rain layer is
increased with the REOS3 equation of state, and decreased by considering a dilute core.
Regardless of the EOS used, including a diffuse core has a similar effect on J6, increasing the
value by a similar amount for similar degree of expansion, when compared to an analogous
model with a compact core. Thus J6 may prove to be a useful constraint in assessing the
degree of expansion of Jupiter’s core.

Predicted core mass

Fig. 8.10 displays the total mass of heavy elements, along with the proportion of that mass
in the dilute core. Models using MH13 with dilute cores, have core masses between 10 and
24 M⊕ (Earth masses), with gradual increase from 24 to 27 M⊕ for the total heavy elements
in the planet. Of the models able to fit the observed J4, those with heavy element contents
closer to the Galileo value have more extended cores containing a greater mass of heavy
elements.

The perturbation of the equation of state with an entropy jump, has an opposite effect
on the predicted core mass with respect to the dilute core, despite the similar effect on the
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calculated Jn. For increasingly large ∆S perturbations, core mass decreases, to ∼8 M⊕,
while total heavy element mass increases. As this perturbation is shifted to higher pressures
the change in core mass becomes less pronounced, for a given value of ∆Z. In all the cases
considered here, the MH13 equation of state predicts significantly larger core masses and
lower total heavy element mass than the SCvH equation of state.
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Figure 8.10: Mass of heavy elements in the core of the model versus the total heavy element
mass in Jupiter predicted by the model. Symbols refer to identical models as in Fig 8.7. The
stars denote models included in Table 8.1. Horizontal lines display the values of MZ,total,
corresponding to 5, 6, 7 and 8× solar abundance of heavy elements.

All of the models depicted in Fig. 8.10 represent fairly conservative estimates of the heavy
element mass. For any such model, there is a trade-off in densities that can be introduced
where the deep interior is considered to be hotter (higher S), and that density deficit is
balanced by a higher value of Z. It is also possible, that a dilute core would introduce a
superadiabatic temperature profile, which would allow for a similar trade-off in densities
and additional mass in the dilute core. Constraining this requires an evolutionary model to
constrain the density and temperature gradients through the dilute core [111, 112], and has
not been considered here. Shifting the onset pressure of helium rain can shift the core mass
by ∼2 M⊕ in either direction. If the majority of the heavy core material is denser rocky
phase [168], the corresponding smaller value of ρ0/ρZ results in a simultaneous decrease in
core mass and total Z of ∼2–4 M⊕.

Using the REOS3, both models with a small, compact core of ∼6 M⊕ or a diluted core
of ∼19 M⊕ are possible, along with a continuum of intermediate solutions. These models
have a much larger total mass of heavy elements, 46 and 34 M⊕, a direct consequence of the
higher temperatures of that EOS [see 128]. The enrichment in heavy elements over the solar
value in the molecular envelope correspond to about 1 for model R and 1.4 for model S,
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pointing to a water abundance close to the solar value in the atmosphere of the planet. In
spite of the difference in total mass of heavy elements, the relationship between core mass
and radius is similar for MH13 and REOS3.

In lieu of additional constraints we can likely bracket the core mass between 6–25 M⊕,
with larger masses corresponding to a more dilute profile of the core. These masses for
the dilute core are broadly consistent those required by the core-collapse formation model
[156], as well as models that account for the dissolution of planetesimals [117]. The mass of
heavy elements in the envelope, and thus the total heavy element mass is strongly affected
by the equation of state, with MH13 predicting 5–6× solar fraction of total heavy elements
in Jupiter and REOS3 around 7− 10× solar fraction.

8.4 Conclusion

After only two perijoves the Juno gravity science experiment has significantly improved the
measurements of the low order, even gravitational moments J2–J8 [57]. The formal uncer-
tainty on these measured Jn is already sufficiently small that they would be able to distin-
guish small differences between interior structure models, assuming that the contribution to
these low order moments arises primarily from the static interior density profile. Considering
a wide range of possible dynamical contributions increases the effective uncertainty of the
static J2–J8 by orders of magnitude [97]. It is expected that the dynamical contribution to
Jn will be better constrained following future perijove encounters by the Juno spacecraft
with measurements of odd and higher order even Jn [98].

Even with this greater effective uncertainty, it is possible to rule out a portion of the
models presented in this study, primarily on the basis on the observed J4. The reference
model, using a DFT-MD equation of state with direct calculation of entropy in tandem with
a consistent hydrogen-helium phase-diagram is incompatible with a simple interior structure
model constrained by composition and temperature from the Galileo entry probe.

Our models suggest that a dilute core, expanded through a region 0.3–0.5 times the
planet’s radius is helpful for fitting the observed Jn. Moreover, for a given J4 the degree to
which the core is expanded affects J6 and J8 in a predictable, model independent manner,
such that further constraining J6 and J8 may allow one to determine whether Jupiter’s
gravity requires such a dilute core. Such a core might arise through erosion of an initially
compact rock-ice core, or through a differential rate of planetesimal accretion during growth,
although both present theoretical challenges.

Using the REOS3 approach leads to a wider range of possibilities which include solutions
with the standard 3-layer model approach or assuming the presence of a dilute core. In
any case, as for the MH13 solutions, the REOS3 solutions require the abundance of heavy
elements to increase in the deep envelope. This indicates that Jupiter’s envelope has not
been completely mixed.

These results present a challenge for evolutionary modelling of Jupiter’s deep interior
[e.g. 187, 118]. The physical processes involved with the formation and stability of a dilute
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core are not understood. It strongly depends on the formation process of the planet and
the mixing at the early stages after formation, and also enters a hydrodynamical regime of
double diffusive convection where competing thermal and compositional gradients can result
in inefficient mixing of material [111, 133]. The timescale for the formation and evolution of
such features, especially on planetary length scales is still poorly understood. In particular,
it is not known whether there would be enough convective energy to expand 10 M⊕ or
more of material to 0.3 to 0.5× Jupiter’s radii. It is also presently unknown whether it
is plausible to expand the core to this degree without fully mixing the entire planet, and
without resorting to extremely fortuitous choices in parameters. Since Jovian planets are
expected to go through periods of rapid cooling shortly after accretion [59], if they are mostly
convective, it is likely that much of the evolution of a dilute core would have to occur early
on in the planet’s history when the convective energy is greatest. This presents a challenge
for explaining interior models requiring a large ∆Z across the helium rain layer, as such a
layer would form after the period of most intense mixing.

In our preliminary models, those able to fit J4 have lower densities in portions of the
outer molecular envelope than MH13. This is achieved though modifying abundances of
helium and heavy elements to be lower than those measured by the Galileo entry probe, or
invoking a hotter non-adiabatic temperature profile. Some formation scenarios [e.g. 139] can
account for relatively low envelope H2O content (∼ 2× solar), but our models would require
even more extreme depletions for this to be explained by composition alone. Alternatively
there might be an overestimate of the density inherent to the DFT simulations of MH13 of
the order of ∼3% for P < 100

Interior models could, therefore, be improved through further theoretical and experimen-
tal studies of hydrogen-helium mixtures, particularly in constraining density in the pressure
range below ∼100 GPa, where the models are most sensitive to changes in the equation of
state. More complicated equation of state perturbations, including the onset and width of the
metallization transition [104] may be worth considering in future modelling efforts. Similarly,
the interior modeling effort will be aided by an independent measurement of atmospheric
H2O from Juno’s microwave radiometer (MWR) instrument [77].
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Chapter 9

Conclusions

The wide range of topics covered in this dissertation exemplifies the relevance of first-
principles material simulations to a broad range of disciplines within planetary science. I
have presented calculations for materials under pressure spanning multiple TPa and temper-
atures spanning tens of thousands of Kelvin. I include studies of materials relevant to the
Earth and other terrestrial planets, both today and during their violent formations, as well as
the gas giants. This versatility, when it comes exploring materials at the extreme conditions
under which they reside within the planets, is an important feature of first-principles tech-
niques. Of course the studies presented here represent just a small selection of the relevant
areas of planetary science to which these simulations are important.

In Chapters 2-4, I presented methods and studies focusing on the calculation and com-
parison of entropy in materials. This is an area of first-principles simulation which has seen
increasing attention in recent years, due to the fact that these calculations were previously
too computationally expensive. The significant improvements in the speed and availability of
high performance computing over this period of time has played a huge role in expanding the
range of tractable problems for materials simulation. This is particularly important in plan-
etary science where liquids and high temperature environments are key to many processes
of interest in their deep interiors. With these newly developed techniques (in particular
thermodynamic integration), we are able to push beyond the more typical equation of state
calculations and begin addressing problems involving simple chemical reactions.

The miscibility of planetary materials is of profound interest across planetary sciences.
The basic structure of the planets reflect the tendency of different materials to combine or
exclude each other. Assessing the extent to which this occurs for major elements in deep
planetary interiors has been a major focus of my thesis work. In Chapter 3, I demonstrated
that iron metal is soluble in liquid metallic hydrogen over the entire range for which these
materials might exist in the Jovian planets. Combined with similar results on H2O, MgO
and SiO2 [201, 203, 65], we now predict that a dense core of Jupiter would be entirely soluble
in the overlying hydrogen-helium envelope. This result has important consequences for the
formation and evolution of the giant planets, although the specifics of Jupiter’s evolution
with an eroding core will require additional modeling efforts to understand fully.
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Similarly, in Chapter 4, I assessed the solubility of analog materials for terrestrial man-
tles and cores at temperatures well above those in the present day Earth, but well within
the extreme temperatures present in the aftermath of energetic giant impacts, such as those
hypothesized in the formation of the Earth’s moon [45, 33]. In this study, I derived solvus
closure temperatures for the Fe-MgO system between ∼6000-9000 K over the pressure range
within the Earth. Since heating from giant impacts is naturally heterogeneous, it can there-
fore be some expected that a portion of the Earth was heated to these temperatures at some
time during its early history. Since the time of publication, experimental results at lower
temperatures [9] have found solubilities broadly consistent with these solvus closure temper-
atures. Thus, a fraction of the planet was likely equilibrated in an entirely different regime
with fully mixed core and mantle material. Geochemical models for the distribution of el-
ements within the Earth are typically done based on understanding of material behaviour
at lower temperatures, and thus, may require some modification if enough of the planet ex-
perienced this very different material regime. Assessing the importance of this mantle-core
miscibility is not straightforward, as there is presently great uncertainty in processes at work
in the immediate aftermath of these energetic giant impacts, during which the degree of me-
chanical mixing may be at least as important as the preferred thermodynamic state of the
material [142, 48]. Although all of the work presented in this dissertation is focused on the
most abundant elements, it is also possible to use the same techniques to assess the solubil-
ity of trace elements which act as important tracers for deep mantle processes in terrestrial
samples.

Finding the properties of material phases is, in general, only half of the story when it
comes to applying first principles techniques to problems in planetary science. Correctly
using an EOS derived from microscopic principles to model planetary scale processes is a
complex art. Chapter 5 summarizes work towards building an integrated model for the
evolution of the cores of small terrestrial planets. The interest in this work was focused
on peculiarities in the Fe-S-Si phase diagram, for which I aggregated a combined model
from various experimental sources. However, it is not possible to simply model a planet’s
core in isolation, since the heat flow is governed by the mantle and lithosphere above. With
sufficient material information combined with iterative methods, it is possible to create a self
consistent model through a planet’s interior, even when the precise location of the interfaces
between layers is not known. The results of such a model will, however, be sensitive to
changes in the equations of state, for which numerous assumptions must be made to account
for limitations of and inconsistencies between different experimental studies.

With this in mind, Chapters 6-8 dealt with development of a new method to relate existing
equations of state to a direct measurable quantity for the gas giant planets. We demonstrated
that the concentric Maclaurin spheroid (CMS) method is capable of measuring gravitational
moments to higher precision in both axisymmetic case and cases with a tidal perturbation.
Since this method is non-perturbative, it led to the discovery of some previously undiscovered
features of tidal response of a rotating body: the splitting of Love numbers of the same
order, and a dependence on those harmonics on the orbital distance of the satellite, neither
of which occur in perturbative calculations. Of more immediate concern, was the result that
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the primary tidal Love number, k22, is elevated by rotation, bringing predictions in line with
the recent observational result for Saturn [110]. It remains to be seen whether Jupiter’s tidal
response also shows this elevated response.

Finally, I detailed a modelling study of the planet Jupiter for interpreting the even
gravitational harmonics from the Juno spacecraft’s preliminary orbits. The CMS calculations
of the gravitational moments are capable of reproducing the measured Jn, but not without
significant modifications to the ‘preferred’ model put forward before orbital insertion [82].
Differences in equations of state have a strong influence on results, despite matching the best
high pressure experiments on hydrogen to within experimental uncertainty. The equation
of state using thermodynamic integration to determine entropy, and thus, the one favored
as most physically realistic, encounters problems because it is comparatively dense at low
pressures. We demonstrated that a dilute core, expanded to a significant fraction of the
planet’s radius, is helpful for matching Jn with the preferred equation of state. However,
even with an expanded core, it is likely that there is at least one remaining issue with the
current models. We proposed a number of solutions, including: a lower than expected heavy
element content in the outer envelope, a hotter outer envelope (perhaps due to an extended
radiative zone) or a systematic offset in the DFT densities for hydrogen-helium mixtures.
Regardless, it appears that independent testing of the calculated equations of state may be
necessary in order to make precise statements about the state of Jupiter’s deep interior.
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in Planets and Satellites. Astrophys. J., 767(2):128, 2013. ISSN 0004-637X. doi:
10.1088/0004-637X/767/2/128. URL http://arxiv.org/abs/1304.1425.

[44] Sanne Cottaar, Timo Heister, Ian Rose, and Cayman Unterborn. BurnMan: A lower
mantle mineral physics toolkit. Geochemistry, Geophys. Geosystems, 15(4):1164–1179,
2014.

http://www.scopus.com/inward/record.url?eid=2-s2.0-34249942855%7B%5C&%7DpartnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-34249942855%7B%5C&%7DpartnerID=tZOtx3y1
http://www.sciencedirect.com/science/article/pii/S0019103598960079
http://www.sciencedirect.com/science/article/pii/S0019103598960079
http://www.agu.org/pubs/crossref/2008/2008GL033311.shtml
http://www.agu.org/pubs/crossref/2008/2008GL033311.shtml
http://www.ncbi.nlm.nih.gov/pubmed/17183319
http://www.ncbi.nlm.nih.gov/pubmed/17183319
http://linkinghub.elsevier.com/retrieve/pii/S0031920101002758
http://linkinghub.elsevier.com/retrieve/pii/S0031920101002758
http://linkinghub.elsevier.com/retrieve/pii/S0012821X07001045
http://linkinghub.elsevier.com/retrieve/pii/S0012821X07001045
http://arxiv.org/abs/1508.05118
http://arxiv.org/abs/1304.1425


BIBLIOGRAPHY 131

[45] Matija Cuk and Sarah T Stewart. Making the Moon from a Fast-Spinning Earth: A
Giant Impact Followed by Resonant Despinning. Science, 1047, oct 2012. ISSN 1095-
9203. doi: 10.1126/science.1225542. URL http://www.ncbi.nlm.nih.gov/pubmed/

23076099.

[46] Tais W. Dahl and David J Stevenson. Turbulent mixing of metal and silicate during
planet accretion – And interpretation of the Hf-W chronometer. Earth Planet. Sci.
Lett., 295(1-2):177–186, jun 2010. ISSN 0012821X. doi: 10.1016/j.epsl.2010.03.038.
URL http://linkinghub.elsevier.com/retrieve/pii/S0012821X10002220.

[47] Nico de Koker, Bijaya B. Karki, and Lars Stixrude. Thermodynamics of the MgO-
SiO2 liquid system in Earth’s lowermost mantle from first principles. Earth Planet.
Sci. Lett., 361:58–63, jan 2013. ISSN 0012821X. doi: 10.1016/j.epsl.2012.11.026. URL
http://linkinghub.elsevier.com/retrieve/pii/S0012821X12006449.

[48] Renaud Deguen, Maylis Landeau, and Peter Olson. Turbulent metal–silicate mixing,
fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett., 391:
274–287, apr 2014. ISSN 0012821X. doi: 10.1016/j.epsl.2014.02.007. URL http:

//linkinghub.elsevier.com/retrieve/pii/S0012821X14000806.

[49] M Deleuil, A S Bonomo, and S. Ferraz-Mello. Transiting exoplanets from the CoRoT
space mission: CoRoT-20b: A very high density, high eccentricity transiting giant
planet. Astron. Astrophys., 538:A145, 2011.

[50] P. D. Desai. Thermodynamic Properties of Iron and Silicon. J. Phys. Chem. Ref. Data,
15(3):967–983, 1986. ISSN 15297845. doi: 10.1063/1.555761.

[51] M. D. Desch and M. L. Kaiser. Voyager measurement of the rotation period of Saturn’s
magnetic field. Geophys. Res. Lett., 8(3):253–256, 1981. ISSN 19448007. doi: 10.1029/
GL008i003p00253.

[52] K. P. Driver and B. Militzer. All-Electron Path Integral Monte Carlo Simulations of
Warm Dense Matter: Application to Water and Carbon Plasmas. Phys. Rev. Lett.,
108(11):115502, mar 2012. ISSN 0031-9007. doi: 10.1103/PhysRevLett.108.115502.
URL http://link.aps.org/doi/10.1103/PhysRevLett.108.115502.

[53] Mathieu Dumberry and Attilio Rivoldini. Mercury’s inner core size and core-
crystallization regime. Icarus, 248:254–268, 2015. ISSN 10902643. doi: 10.1016/j.
icarus.2014.10.038.

[54] Linda T. Elkins-Tanton. Magma Oceans in the Inner Solar System. Annu. Rev.
Earth Planet. Sci., 40(1):113–139, may 2012. ISSN 0084-6597. doi: 10.1146/
annurev-earth-042711-105503. URL http://www.annualreviews.org/doi/abs/10.

1146/annurev-earth-042711-105503.

http://www.ncbi.nlm.nih.gov/pubmed/23076099
http://www.ncbi.nlm.nih.gov/pubmed/23076099
http://linkinghub.elsevier.com/retrieve/pii/S0012821X10002220
http://linkinghub.elsevier.com/retrieve/pii/S0012821X12006449
http://linkinghub.elsevier.com/retrieve/pii/S0012821X14000806
http://linkinghub.elsevier.com/retrieve/pii/S0012821X14000806
http://link.aps.org/doi/10.1103/PhysRevLett.108.115502
http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-042711-105503
http://www.annualreviews.org/doi/abs/10.1146/annurev-earth-042711-105503


BIBLIOGRAPHY 132

[55] Yingwei Fei, Constance M Bertka, and Larry W Finger. High-Pressure Iron-Sulfur
Compound , Fe 3 S 2 , and Melting Relations in the Fe-FeS System. Science (80-. ).,
1621(1997), 1997. doi: 10.1126/science.275.5306.1621.

[56] Yingwei Fei, Jie Li, Constance M Bertka, and Charles T Prewitt. Structure type
and bulk modulus of Fe 3 S , a new iron-sulfur compound. Am. Minerol., 85(1996):
1830–1833, 2000.

[57] W M Folkner, L Iess, J D Anderson, S W Asmar, D R Buccino, and D Durante. Jupiter
gravity field estimated from the first two Juno orbits. Geophys. Res. Lett. (under Rev.
this issue), 2017.

[58] Hugo Folonier, Sylvio Ferraz-Mello, and Konstantin V. Kholshevnikov. The flat-
tenings of the layers of rotating planets and satellites deformed by a tidal poten-
tial. Celest. Mech. Dyn. Astron., 122(2):183–198, 2015. ISSN 0923-2958. doi:
10.1007/s10569-015-9615-6. URL http://arxiv.org/abs/1503.08051.

[59] J Fortney and N Nettelmann. The Interior Structure, Composition, and Evolution of
Giant Planets. SSR, 152:423, 2010.

[60] Martin French, Andreas Becker, Winfried Lorenzen, Nadine Nettelmann, Mandy
Bethkenhagen, Johannes Wicht, and Ronald Redmer. Ab Initio Simulations for Ma-
terial Properties Along the Jupiter Adiabat. Astrophys. J. Suppl. Ser., 202(2011):5,
2012. ISSN 0067-0049. doi: 10.1088/0067-0049/202/1/5.

[61] Daniel J. Frost, Yuki Asahara, David C. Rubie, Nobuyoshi Miyajima, Leonid S.
Dubrovinsky, Christian Holzapfel, Eiji Ohtani, Masaaki Miyahara, and Takeshi Sakai.
Partitioning of oxygen between the Earth’s mantle and core. J. Geophys. Res., 115
(B2):1–14, feb 2010. ISSN 0148-0227. doi: 10.1029/2009JB006302. URL http:

//www.agu.org/pubs/crossref/2010/2009JB006302.shtml.

[62] S. V. Gavrilov and V. N. Zharkov. Love numbers of the giant planets. Icarus, 32
(4):443–449, 1977. ISSN 00191035. doi: 10.1016/0019-1035(77)90015-X. URL http:

//linkinghub.elsevier.com/retrieve/pii/001910357790015X.

[63] G Giampieri, Michele K Dougherty, E J Smith, and Christopher T Russell. A regular
period for Saturn’s magnetic field that may track its internal rotation. Nature, 441
(7089):62–64, 2006. ISSN 0028-0836. doi: 10.1038/nature04750.

[64] A. E. Gleason, W. L. Mao, and J. Y. Zhao. Sound velocities for hexagonally close-
packed iron compressed hydrostatically to 136 GPa from phonon density of states.
Geophys. Res. Lett., 40(12):2983–2987, 2013. ISSN 00948276. doi: 10.1002/grl.50588.

[65] F Gonzalez, Hugh F Wilson, and Burkhard Militzer. Solubility of silica in metallic
hydrogen: implications to rocky core solubility of giant planets. Phys. Rev. B, 2013.

http://arxiv.org/abs/1503.08051
http://www.agu.org/pubs/crossref/2010/2009JB006302.shtml
http://www.agu.org/pubs/crossref/2010/2009JB006302.shtml
http://linkinghub.elsevier.com/retrieve/pii/001910357790015X
http://linkinghub.elsevier.com/retrieve/pii/001910357790015X


BIBLIOGRAPHY 133
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